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 A B S T R A C T

Remote laser welding is an increasingly common process in automotive assembly, particularly in body-in-white 
and battery manufacturing. While 3D vision cameras enable quick-turnaround inspections of the welds, tra-
ditional machine vision algorithms to detect welds, namely template-matching raster-search implementations, 
often struggle with the variability in weld appearance and quality. Consequently, these implementations may 
fail to detect partial welds, distorted welds, or welds with any significant deviation from the templates used 
within the algorithms. Also, the raster scan sometimes detects false positives, welds that are, in fact, not present. 
To address these challenges, this study introduces a weld surface detection system that uses Graph Neural 
Networks (GNNs) to detect the presence and locations of welds in 3D point cloud data, implicitly incorporating 
the variability inherent in the training data samples. The proposed deep-learning algorithm comprises two GNN 
models chained together: one for segmenting welds by the direction and identity, and another for locating the 
center of welds. This approach also operates directly on point clouds, offering a computationally efficient 
alternative to the typical 2D normal map projection or 3D voxelization pre-processing operations on point 
clouds. In the experimental results, the proposed algorithm identified all welds present, including those with 
shape deviations, demonstrating a relative strength compared to a template-matching baseline currently used 
in production.
1. Introduction

Laser welding is widely employed in the automotive industry for 
joining both structural and non-structural components [1,2]. Increas-
ingly, laser welding equipment is integrated into robot cells as part 
of end-of-arm tooling, where robotic path tracing enables repeatabil-
ity of the weld shapes, sizes, and locations [3]. Additional fixturing 
on the parts being welded together provides a datum for the target 
weld locations, enhancing the repeatability of welds across different 
instances of sub-assemblies that pass through automated welding cells 
or stations [4]. Yet, even with consistent fixturing and preprogrammed 
robotic paths, there can still be significant variability in the weld 
formation, with quality implications for the welds themselves and, by 
extension, for the vehicle. The high energy of the lasers used in welding 
processes creates dynamic and non-equilibrium reactions [5], leading 
to variations in surface quality across welds. Individual welds, thus, 
have to be inspected to ensure quality [6]. In particular, welds are 
evaluated on their morphological features, and are deemed structurally 
sound when these features meet predefined threshold standards [7–9].

3D point clouds of welds (Figs.  1(a) and 1(b)) enable surface quality 
assessments of the welds’ morphologies. Before inspection, a detection 
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step is required, which is the focus of this study. The objective of de-
tecting welds from such scans can be categorized as an object detection 
task on point clouds, which also has relevance in various fields beyond 
manufacturing [10]. Traditional template-matching implementations 
on 3D point clouds commonly involve organizing the point clouds into 
a structured format before searching using a predefined template [11]. 
Point clouds are often organized into grid-based structures, such as by 
computing 2D normal maps (Fig.  1(c)), projecting and averaging them 
into 2D images, or voxelizing them into 3D grids [12].

During template-matching, manually-crafted kernels or templates 
operate on these grid structures by convolution [13]. Incidentally, the 
existing traditional weld-detection program, featuring manually-crafted 
kernels for template-matching, failed to detect some welds, and, in 
some cases, detected false positives (Fig.  2). The failure modes of 
the current system prompted an investigation into a deep learning 
alternative to handle the responsibility of locating welds. To wit, in 
2D or 3D Convolutional Neural Networks (CNNs) [14], the convolution 
kernels can be learned directly from data, which theoretically leads to 
more representative templates, thus improving the accuracy of object 
detection by template-matching.
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Fig. 1. (a) Off-axis view of a 3D scanned section of the floorpan, with 6 staple welds; 
(b) Gray-scale top-view of the intensities from the same point cloud scan; (c) 2D normal 
map of the point cloud scan, with ground truth weld locations overlaid and additional 
tags to identify the weld directions and weld numbers; (d) Illustration of the left-facing 
(left) and right-facing (right) staple welds.

Fig. 2. Examples of misclassified welds based on the traditional template-matching. 
‘FP’ indicates the false positive, while ‘M’ indicates the missed weld.

However, point clouds are inherently unstructured and sparse, at-
tributes that do not naturally favor grid structures. The aforementioned 
grid-based conversions or projections require additional computations 
of varying complexity, which often leads to a loss of information 
from the original point cloud and to the introduction of artificial 
artifacts or inaccuracies. Conversely, graph-based methods allow for 
various levels of processing unstructured point clouds in their sparse 
3D representations [15]. By encoding point clouds as graphs, which 
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inherently capture high-fidelity spatial proximity relationships, we cir-
cumvent the need to project or voxelize point clouds into 2D or 3D 
grid structures, and avoid losing or obscuring some raw information 
of the original data. Therefore, Graph Neural Networks (GNNs) offer 
distinct advantages over CNNs and other grid-based methods when 
processing point clouds as graphs. The GNN-based algorithm presented 
in this study combines elements of PointNet [16], PointNet++ [17], 
and PointGNN [15] to effectively detect, segment, and locate the welds 
from point cloud scans.

PointNet [16] demonstrates the use of multi-layer perceptrons 
(MLPs) to extract point embeddings from point cloud coordinates. The 
architecture leverages MLPs in conjunction with permutation-invariant 
pooling operations, like max-pooling, to approximate continuous single 
value functions that operate on sets of points. PointNet++ [17] builds 
upon PointNet by introducing a density-informed adaptive sampling 
of the cloud; and uses PointNets hierarchically to balance expanding 
the receptive fields that help to capture more spatial context, while 
maintaining computational efficiency. Finally, PointGNN [15] operates 
on point clouds by first casting them into a graph structure. It generates 
and updates node-, edge-, and graph-embeddings along the network 
using the graph casting as a computation graph, then terminates with 
point-wise classifications and bounding-box predictions. PointGNN, in 
short, is an end-to-end network that is trained to detect objects of 
interest from a point cloud.

We draw inspiration from these methods to learn weld-detection 
from labeled samples. This paper details a specific implementation for 
processing 3D point cloud scans with a relatively large field of view to 
pinpoint the locations of welds of a specific geometric shape. The spe-
cific weld shape in this treatment is that of a staple: two arc segments 
vertically aligned and joined by a vertical line segment on either the 
left or right ends of the arcs (Fig.  1(d)). The staple welds are patterned 
across the floorpans of the GMC Hummer EV, and samples of these (Fig. 
1(a)) were collected to train the GNNs. The GNN-based algorithm has 
been validated on staple welds in this paper and can be generalized to 
detect other parametric shapes as well. This paper specifically addresses 
a low-cost scenario where only the location information of points is 
available in the point cloud. The proposed method achieves robust 
performance without relying on point normals, gray-scale intensities, 
color information, or accompanying 2D images from the vision system.

In summary, (1) we propose and investigate a new algorithm to 
detect the location of staple-shaped welds from a point cloud scan 
that includes multiple welds. The algorithm chains together two GNNs, 
one for identifying welds in the scan and a second for predicting the 
location of each identified weld. The sequential split affords some high-
level explainability of the welds and their detections, and provides two 
lever for tuning incremental improvements on the whole task. This 
algorithm is specifically scoped to apply deep learning techniques to 
the permutation-invariant unstructured format of point clouds, and to 
limited resolution point clouds that contain only location information 
of constituent points.

(2) We compare the results of the GNN-based network to a tradi-
tional baseline algorithm that uses pattern matching on a 2D normal 
map of the scan. The proposed algorithm demonstrates clear robustness 
against missed detections and false positives, which are common issues 
with the pattern-matching approach.

The detailed algorithm, network structure, and training procedures 
are first described in Section 2. Section 3 presents the intermediary and 
summary results from processing the evaluation datasets and discusses 
some noticeable sources of error. Section 4 suggests possible avenues 
for improvement, to close out.

2. Methodology

Compared to PointGNN [15], where the objects of interest within 
the point cloud are varied and may have complex structures, the ob-
jects in this study are parametrically defined staple shapes (Fig.  1(d)), 
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Fig. 3. An overview of the serial connection of two separate GNNs for weld detection and localization, and the flow of information from scan to inspection.
created with robotic precision. Furthermore, the detection pipeline, 
which identifies the presence, direction, and identity of welds within 
a large area scan, is implemented using two separate GNNs in series, 
as summarized in Fig.  3, rather than a single end-to-end detection 
network. The decomposition allows for analyzing intermediate states 
of the process, and back-tracing for the sources of anomalous detection 
predictions, which equates to more explainability and control than 
would otherwise be obvious.

The first GNN serves as a segmentation network, classifying points 
as belonging to specific welds with a specific facing direction (Fig.  1(c)) 
or as background points of the floorpan, effectively distinguishing weld-
related members from the surrounding background. The second GNN is 
a location regression network, predicting a weld’s location from all the 
points previously adjudged to belong to that particular weld. A weld 
itemizing (or weld extraction) procedure bridges the two networks. 
After the three-step sequence of identifying, extracting, and locating 
welds within the point cloud, the predicted locations are forwarded 
to a pre-existing inspection algorithm for evaluation. This final step 
determines whether the welds meet quality standards or require repair. 
Lastly in comparison to PointGNN, the proposed pipeline operates 
on higher-resolution stereo-correlation scans, compared to the wider-
volume lower-resolution LIDAR scans in the PointGNN experiments. 
This detection task expects sub-millimeter accuracy in the weld location 
predictions. The following subsections detail the respective stages of the 
sequence.

2.1. Weld-segmentation GNN

The first-stage GNN functions as both a semantic and instance seg-
mentation network, where segmentation involves classifying each point 
individually then aggregating all classifications. In the semantic seg-
mentation task, each point is labeled based on weld direction—whether 
the weld is facing left, facing right, or is part of the background. In 
the instance segmentation task, each point is assigned a weld number, 
indicating whether it belongs to (from left to right) the first weld, 
second weld, and so forth, or is part of the background. This approach 
determines the number of welds present, their point members, and 
the welds’ orientations by member consensus. The weld orientation is 
necessary for the downstream inspection system.

This Weld-Segmentation network stage adopts the approach used 
in PointGNN, starting by casting the scanned point cloud into a graph 
structure of high-resolution and low-resolution node layers. It incorpo-
rates an auto-registration mechanism to learn corrective adjustments 
to individual node coordinates, and extracts node embeddings from 
coordinates and edge embeddings from displacement vectors. Addi-
tionally, it follows PointNet++’s hierarchical point set abstractions to 
selectively transfer information from the high-resolution points to the 
low-resolution points used for predictions. Subsequently, the network 
processes these low-resolution points through an interplay of multi-
layer perceptrons (MLPs) and max-pooling operations to generate the 
segmentation output, similar to PointGNN. However, unlike PointGNN, 
the final prediction head in this network classifies points along two 
axes—weld direction and weld number—omitting the bounding-box 
location and dimension predictions.
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Fig. 4. Graph Generation for Weld-Segmentation: (a) illustration of the two layers of 
graph vertices, 𝑉1 (light gray circles) and 𝑉2 (blue circles), with the inter-layer edges 
(dark gray arrows) and intra-layer edges (green arrows); and (b) example of the two 
layers of graph vertices with the inter-layer edges (gray lines) and intra-layer edges 
(green lines).

2.1.1. Graph generation for weld-segmentation
The scanned point cloud is organized into collections of vertices 

(or nodes) (𝑉 ) and edges (𝐸), representing the graph, 𝐺(𝑉 ,𝐸). The 
graph dictates the computation graph of the GNN, instructing the 
network on which nodes will share information by message passing 
and aggregation. The graph construction features two sets (or layers) of 
nodes: an initial high-resolution set (𝑉1) and the down-sampled lower-
resolution set (𝑉2) on which predictions will be based. Down-sampling 
reduces the number of computations and was necessary to fit the full 
graph on the GPU available. Each point cloud is already pre-down-
sampled from the original scan resolution of 0.08 mm to the 0.2 mm 
‘‘high-res’’ 𝑉1 layer. This initial resizing is to replicate the case of having 
to work with lower-quality 3D scanners. The final lower-quality set is 
a further re-sampling to a 0.6 mm resolution (𝑉2). A collection of inter-
layer edges, 𝐸𝑖𝑛𝑡𝑒𝑟, pass messages between the two sets (𝑉1) and (𝑉2), 
and a collection of intra-layer edges, 𝐸𝑖𝑛𝑡𝑟𝑎, share information across 
the nodes of the low-res layer, all as part of the network architecture 
described in the next subsection. Fig.  4(a) illustrates and 4(b) shows an 
example of the graph structures, defined by: 

𝐺(𝑉 ,𝐸) = 𝐺(𝑉1, 𝑉2, 𝐸𝑖𝑛𝑡𝑒𝑟, 𝐸𝑖𝑛𝑡𝑟𝑎)
𝐸𝑖𝑛𝑡𝑒𝑟 =

{

(𝑖, 𝑗) ∣ ‖𝑉2[𝑗] − 𝑉1[𝑖]‖ ≤ 0.4mm
}

𝐸𝑖𝑛𝑡𝑟𝑎 =
{

(𝑖, 𝑗) ∣ ‖𝑉2[𝑗] − 𝑉1[𝑖]‖ ≤ 1.2mm
}

.
(1)

2.1.2. Weld-segmentation network architecture
The network is constructed as a sequence of three sub-networks: 

the inter-layer convolution sub-net, the intra-layer convolution sub-net 
and the prediction head. The operational details of the sub-networks 
are illustrated in Fig.  5. The max-pooling operation, an example of a 
permutation-invariant aggregation function, handles the message pass-
ing between nodes via edges, by collecting the highest values for each 
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Fig. 5. Weld-Segmentation network, featuring message passing and aggregation from 
the high-resolution layer of vertices to the lower resolution down-sampled layer of 
vertices using the Inter-Layer Convolution subnet, then across the vertices of the 
low-resolution layer through their respective edge embeddings using the Intra-Layer 
Convolution subnet.

dimension across all edge embeddings with a shared destination [18]. 
The output of this operation is a new node embedding for each desti-
nation vertex. Pooling operations are followed by MLPs to update the 
pooled node embeddings. The prediction head sub-network classifies 
each point by weld direction and weld number, by attributing to each 
class the point’s probabilities of belonging to a given direction and a 
given weld instance.

2.1.3. Dataset for weld-segmentation
The dataset of 602 point clouds was collected by scanning weld-

containing sections of the floorpans of 28 GMC Hummer EVs during 
production. Each scan was recorded using LMI Technologies’ Gocator 
3210 to capture 190 mm × 34 mm sections of the floorpan by stereo-
correlation, and at a resolution of 0.08 mm. A corresponding label text 
file was created for each scan, to list the 2D location and weld-direction 
for each of the 3 to 6 welds present in the scan. All labels were manually 
verified. The per-weld locations and directions recorded in the label 
files were translated into point-wise weld-direction and weld-number 
labels before processing samples through the model. This translation 
was executed by, first, superimposing a staple shape mask on the point 
cloud at the ground truth weld locations. The masked points were then 
labeled according to their respective weld numbers and weld directions. 
Thus, our training point clouds had now been augmented to include 
two additional ground truth attributes per point, alongside their 3D 
locations: the direction of the weld and the number or identity of the 
weld that the point belongs to.

2.1.4. Objective function featuring focal loss cross entropy
The classification objective was implemented with the Focal Loss

[19] adaptation to the Categorical Cross-Entropy Loss function. The 
574 
Fig. 6. Semantic and instance segmentation prediction plots from the Weld-
Segmentation GNN on an example scan. Each point of the downsampling is color-coded 
by weld-direction (top) and by weld-number (middle). The gray-scale top-view image 
of the point cloud intensities is pictured (bottom) for reference.

Categorical Cross-Entropy loss calculates a measure of uncertainty or 
entropy for each category which is then summed across all samples 
in the training set. Focal Loss extends the cross-entropy loss by at-
taching more weight to the entropies of the hard-to-classify points. 
The 𝛼-adjusted variant [19] of Focal Loss, used in this training, scales 
these atomic losses to correct for the imbalance in the representations 
across the different classes. In this case, background nodes make up an 
exaggerated majority of the scan, so their losses will be scaled down 
according to their outsized representation: 

Focal Loss =
𝑁
∑

𝑖
(1 − 𝑝𝑐 )𝛾 𝑙𝑜𝑔(𝑝𝑐 ) 𝛼𝑐 ∣ 𝑡(𝑖) = 𝑐

𝛼𝑐 =
(

𝑁
∑

𝑖
(1 ∣ 𝑡(𝑖) = 𝑐)

)−1,

(2)

where 𝑡(𝑖) is the truth label for the 𝑖th node; 𝑝𝑐 is the predicted 
probability of belonging to class 𝑐; and 𝛾 is the focusing parameter that 
controls by how much to down-weight easy samples.

The objective function (3) incorporates a Focal Loss term for both 
the semantic (Focal𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐) and instance (Focal𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒) classification sub-
tasks, placing greater emphasis on the instance segmentation task. Ad-
ditionally, a regularization term on the model parameters was included 
to temper down weight values and overfitting: 
Loss = Focal𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 +10 × Focal𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 +

∑

∀𝑤𝑘∈𝑊
‖𝑤𝑘‖, (3)

where 𝑊  is the set of all model parameters.

2.1.5. Weld-segmentation training
The network was trained on 481 random samples from the full set 

of 602 scans, in a 5-fold cross-validation experiment. The graphs were 
constructed with less than the full complement of available edges, as 
in dropout regularization [20]. Each model was trained stochastically 
using PyTorch’s stock Adam optimizer [21] with a 0.0001 learning 
rate. The output predictions of the segmentation network on an ex-
ample scan are shown in Fig.  6. Generally, the semantic segmentation 
predictions are more accurate compared to the instance segmentation. 
However, both results contain scatterings of misclassified points. A 
summary of results across the test scans is provided in the results 
Section 3.1.

2.2. Post-segmentation itemizing

Once the segmentation network has highlighted the presence of 
welds, a post-segmentation step is required to extract subsets of the 



K. Welbeck et al.

 

Journal of Manufacturing Processes 145 (2025) 571–580 
point cloud corresponding to each identified weld—referred to as item-
ized weld clouds. Due to imperfections in the segmentation results, 
extracting accurately shaped welds can be challenging, which makes 
post-segmentation clean-up necessary.

Three different post-process solutions have been tested: a ‘‘Spatial-
Clustering’’ scheme, a ‘‘Segment-Clustering’’ scheme, and a ‘‘Combo-
Clustering’’ scheme. Each scheme, described in the subsections that 
follow, incorporates the Density-Based Spatial Clustering Application 
with Noise (DBSCAN) algorithm [22] to itemize and sanitize individual 
welds.

2.2.1. Density Based Spatial Clustering of Applications with Noise (DB-
SCAN)

DBSCAN [22] is an unsupervised technique to separate a set of data 
points into regions of dense clusters of points, agnositic to cluster shape. 
The algorithm is employed in the subsequent clustering schemes to 
identify welds as the densest contiguous regions of segmented points 
from the point cloud, and to remove clusters that are too small as noise. 
The DBSCAN algorithm finds core points of high density and expands 
clusters out from those core points. Two global parameters govern the 
algorithm’s results: the neighborhood radius and the minimum density 
threshold, which were set to 0.2 mm and 20, respectively, in these 
experiments.

2.2.2. Spatial-clustering
Spatial-Clustering (1) removes all background-predicted points ag-

gregated as the union of background classifications in the semantic and 
instance segmentation tasks; (2) clusters the remaining points in 3D 
space with DBSCAN, and retains the largest clusters of points as welds, 
above a certain size threshold; then (3) assigns weld-directions and 
weld-numbers to each weld by majority vote on the clusters’ semantic 
and instance predictions.

Spatial-Clustering performs its best when the welds are well spaced 
out. In these cases, weld clusters retain the general staple shape of 
welds, like with the masking used in point-wise labeling. In the frequent 
occurrence of multiple welds in very close proximity to one another, 
what should be separate welds are clustered as a larger conglomerate. 
Clustering multiple welds as one merged weld negatively affects the 
clean up, and propagates through the rest of the weld-detector algo-
rithm as missed welds and weld detections with large errors in the 
predicted locations.

2.2.3. Segment-clustering
Segment-Clustering (1) similarly removes the background-predicted 

points, post-segmentation; (2) counts the number of predictions for 
each weld number (1 to 6) and filters the counts through a size thresh-
old to identify the number of welds to detect; (3) extracts the points 
predicted as belonging to each weld instance, counting up to the num-
ber of welds identified, then with DBSCAN, excludes all points but the 
largest contiguous cluster as the weld; then finally, (4) with the weld-
number already assigned from the instance segmentation predictions, 
weld-directions are deduced by majority vote on the clusters’ semantic 
segmentation predictions. Segment-Clustering, for the most part, avoids 
the merged clusters problem of spatial-clustering, except for when 
a contiguous cluster from the noisy segmentation predictions bleeds 
into other welds. A consistent artifact of Segment-Clustering is that 
extracted welds do not hold to the general shape of staple welds, and 
by varying degrees. The large variability of cluster shapes negatively 
impacts the accuracy of the downstream weld-location network.
575 
Fig. 7. Demonstrating the post-segmentation clustering schemes on two sample 
scans, where Combo-Clustering fuses the results from Segment-Clustering and Spatial-
Clustering.

2.2.4. Combo-clustering
Combo-Clustering compares the itemized welds of Spatial-Clustering

and Segment-Clustering. In the cases where Spatial-Clustering erro-
neously merges two welds, combo-clustering favors the itemization 
from Segment-Clustering.

The result of the clustering clean-up is a collection of subsets of 
points, each subset corresponding to a weld detected in the original 
scan. Each itemized weld cloud of the collection is individually for-
warded to the next GNN. An example of the post-segmentation clean-up 
and itemization results on the instance segmentation output of a sample 
scan is plotted in Fig.  7(a), according to each of the three clustering 
schemes. Combo-Clustering’s ability to differentiate and correct merged 
welds is specifically demonstrated in Fig.  7(b).

2.3. Weld-location GNN

Weld location inference is handled by a regression network that 
processes each itemized weld cloud into a graph-wise prediction of the 
weld’s 2D center location. By this point, the weld’s direction has already 
been determined by consensus during the preceding post-segmentation 
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clustering cleanup. This Weld-Location GNN aims to formulate a com-
plex averaging function over the points in the itemized weld cloud that 
locates the anchor or center location of the weld shape. The Weld-
Location network introduces two custom pooling operations that are 
used side by side: similarity-weighted pooling and proximity-weighted 
pooling. Both permutation-invariant pooling operations average the 
messages aggregated from neighboring nodes, but with relative nor-
malization constants that are based on cosine similarities and inverse 
Euclidean distances, respectively. Additionally, max- and mean-pooling 
operations are used side by side, along with the weld’s centroid in 
the extraction of the graph-embedding before a final MLP predicts the 
weld’s center location.

2.3.1. Graph generation for weld-location
The weld extractions itemized upstream are re-cast into a graph 

structure of vertices and edges, 𝐺(𝑉 ,𝐸), where edges exist between any 
pair of points that are, at most, 1.2 mm apart: 
𝐸 =

{

(𝑖, 𝑗) ∣ ‖𝑉2[𝑗] − 𝑉1[𝑖]‖ ≤ 1.2 mm
}

. (4)

2.3.2. Dataset for weld-location
Datasets were generated by saving the post-segmentation clustering 

extractions as weld point clouds, and their corresponding 2D location 
labels from the original weld-segmentation label text files. The two 
clustering schemes (Spatial-Clustering and Segment-Clustering) gener-
ate two different styles of weld extractions, which were both used 
in training the network (with their strengths and faults in tow). The 
Segment-Clustering dataset had a total of 2773 samples. The Spatial-
Clustering dataset had fewer samples of 2657, on account of the merged 
weld extractions.

2.3.3. Weld-location network architecture
The rationale behind the Weld-Location GNN was to learn a contin-

uous value function to approximate a complex averaging scheme on all 
the points in the graph. The function should notice the offset relative 
to the mean position of the weld shape. It should de-emphasize the 
impact of the vertices that would worsen the prediction accuracy but 
pay more attention to the high-impact points that hold true to the weld 
shape. Similarity-Weighted Pooling and Proximity-Weighted Pooling 
were attempted as alternatives to max-pooling early in the network 
to keep the node embeddings relatively more differentiated than with 
max-pooling.

Similarity-Weighted Pooling is defined as: 

ℎ(𝑘+1)𝑢 =

SUM
𝑣∈𝑁(𝑢)

( ℎ(𝑘)𝑣 ⋅ ℎ(𝑘)𝑢

‖ℎ(𝑘)𝑣 ‖ ‖ℎ(𝑘)𝑢 ‖

ℎ(𝑘)𝑣
)

SUM
𝑣∈𝑁(𝑢)

( ℎ(𝑘)𝑣 ⋅ ℎ(𝑘)𝑢

‖ℎ(𝑘)𝑣 ‖ ‖ℎ(𝑘)𝑢 ‖

)

+ ℎ(𝑘)𝑢 . (5)

Proximity-Weighted Pooling is defined as: 

ℎ(𝑘+1)𝑢 =
SUM
𝑣∈𝑁(𝑢)

( 1
‖𝑋𝑢 −𝑋𝑣‖

ℎ(𝑘)𝑣
)

SUM
𝑣∈𝑁(𝑢)

( 1
‖𝑋𝑢 −𝑋𝑣‖

)

+ ℎ(𝑘)𝑢 , (6)

where ℎ(𝑘)𝑢  and ℎ(𝑘+1)𝑢  represent the previous and updated node embed-
dings of node 𝑢; 𝑋𝑢 denotes the 3D coordinate location of node 𝑢; 𝑁(𝑢)
are the neighbors of node 𝑢; and SUM

𝑣∈𝑁(𝑢)
 is the element-wise sum pooling 

across neighbors of node 𝑢.
The outputs from the respective pooling operations were concate-

nated together, leaving the model to work out its relative preference 
between the pooling outputs. Node coordinates were forwarded into 
later node embeddings, for spatial equivariance and to eliminate the 
need to center the point cloud at (0, 0). Max-pooling and mean-pooling 
outputs were concatenated into the graph’s initial embedding. The clus-
ter’s mean location was forwarded into the graph’s initial embedding 
too, improving the location predictions. The chain of operations of the 
Weld-Location network is illustrated in Fig.  8.
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Fig. 8. Information flow of Weld-Location GNN, featuring node-level embeddings 
pooling into a graph-level embedding of the itemized weld point cloud.

2.3.4. Objective function featuring huber loss
The network was trained with PyTorch’s Huber Loss in the objective 

function. This is a linear function with respect to the error magnitudes, 
except for below a specified threshold when a quadratic function 
ensures smoothness. The cost function had a regularization term to 
limit the magnitudes of the model parameters: 
𝑁
∑

𝑖=1
Huber

(

𝑝𝑖, 𝑡(𝑖)
)

+
∑

∀𝑤𝑘∈𝑊
‖𝑤𝑘‖, (7)

where 𝑡(𝑖) is the truth label for the 𝑖th sample in the set; 𝑝𝑖 is the 
predicted location for the 𝑖th sample; and 𝑊  is the set of all model 
parameters.

2.3.5. Training for weld-location
The model was trained in a 5-fold cross-validation experiment. The 

graphs were, again, constructed with less than the full complement of 
available edges as a regularization technique. Each Fold was set to train 
for 2000 epochs with early stopping beyond the 300th epoch. Each 
model was trained stochastically using PyTorch’s stock Adam optimizer 
with a 0.0001 learning rate. The detections, location predictions, and 
errors of welds itemized from a sample scan are illustrated in Fig.  9. 
Fig.  9(d) shows the absolute errors in the predictions for each weld 
identified, and the latitudinal and longitudinal decomposition of the 
errors to emphasize the respective primary directions of each error.

3. Results and discussions

3.1. Weld-segmentation GNN results

The first-stage segmentation model was trained and evaluated on 
481 and 121 samples, correspondingly. Across the 5 folds, the semantic 
and instance segmentation subtasks showed average global accuracies 
of 0.974 and 0.96, and mean Intersection over Union (mIoU) scores 
of 0.856 and 0.718. In this instance, the accuracy metric reports the 
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Fig. 9. (a) Gray-scale intensity image (top) and ground truth location labels overlaid on 
the normal map of the scan (bottom); (b) Weld-Location predictions on each itemized 
weld, previously isolated from the segmentation predictions of the Weld-Segmentation 
network; (c) Predictions of weld detections and locations according to the two-stage 
GNNs aggregated together; and (d) Absolute error and the directionally decomposed 
error magnitudes (dx and dy) for each weld location prediction compared to the truth 
labels.

Table 1
Semantic segmentation summary statistics.
 Class: Per weld-direction Global 
 Left-facing Right-facing Background  
 Accuracy 0.979 0.983 0.974 0.974  
 [m]IoU 0.793 0.803 0.973 0.856  
 Recall 0.807 0.813 0.999 0.873  
 Precision 0.979 0.983 0.974 0.979  
 F1 Score 0.882 0.888 0.986 0.919  

percentage of correctly predicted point-wise classifications, and mIoU 
is used in its classic sense for multiple-class segmentation.

Tables  1 and 2 show more granular statistics, per weld-direction and 
per weld-number. The relatively large number of background points 
skew the global statistics towards more favorable reporting on the 
respective global metrics. The slight edge in right-facing weld scores 
can be attributed to the higher number of right-facing welds (1128 com-
pared to 1046 left-facing welds) in the training dataset. Similarly, the 
number of scans with at least 6 welds is fewer than those with at least 
5 welds, which is fewer still than those with at least 4 welds, and so 
on. Additionally, while the first weld is, in most cases, on the far left of 
the scan, and the sixth weld, when available, is always on the far right 
of the scan, there is more variability in the longitudinal (x-dimension) 
locations of the second to the fifth welds. Combined together, these 
distribution characteristics might help explain the observed trends in 
the granular per-instance statistics. Tangentially, semantic segmenta-
tion presents a simpler task in this context than instance segmentation, 
with fewer classes to distribute across. Consequently, the segmentation 
network performs better on the semantic task.
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3.2. Post-segmentation itemizing results

Tables  3–5 report accuracy and precision statistics from the Spatial-, 
Segment- and Combo-Clustering sequences on weld clusters extracted 
from the 602 samples of weld-segmentation predictions. These are 
not directly comparable with the segmentation statistics on account 
of having discarded many points in the respective clustering schemes. 
Incidentally, the Segment-Clustering scheme discards more points than 
Spatial-Clustering, making segment-clustering statistics more sensitive 
to misclassifications. Combo-Clustering reflects the counts and statis-
tics of Spatial-Clustering for the most part, except in the situations 
where cluster merges force the scheme to defer to Segment-Clusters. 
Consequently, the Combo-Clustering statistics show some degree of 
correcting the misclassifications of the Spatial-Clustering scheme.

3.3. Weld-location GNN results

The second-stage regression model was trained and evaluated on 
1927 and 199 itemized weld point clouds, also across 5 folds. Focusing 
on a dataset created from the upstream segmentation and then post-
processed with Segment-Clustering, the location predictions (and thus, 
the detection predictions) averaged within 0.244 mm of the truth 
labels, and with a standard deviation of 0.258 mm. Table  6 additionally 
shows the percentage accuracies across the 199 test samples, referring 
to the percentage of predictions that are within selected threshold error 
distances.

Though the GNN-based method captures all the welds in the 3D 
point clouds, there is a relatively large difference between the predicted 
weld positions and the actual weld positions for some of the welds. 
The success of the algorithm is ultimately determined by these location 
predictions. In this particular study, the precision requirement of the 
inspection algorithm dictated that the compatibility limits of the predic-
tion accuracies allowed up to approximately 0.75 mm of misalignment. 
Per the statistics collated from the 121 test samples (Table  7), 92.8% of 
the correctly detected welds are within 0.75 mm of the truth locations.

3.4. Sources of error

Weld directions are correctly predicted in all test samples, as with 
the baseline template-matching algorithm. While the GNN-based weld-
detector boasts no false detections and no misclassified welds on typical 
scans, the accuracy of the location predictions on correctly detected 
welds is invariably worse than that of the baseline. Analyzing the pro-
gression from the initial sample scans to the final weld detection reveals 
a few notable sources of error: (1) noise in the instance segmentation 
predictions, and (2) inconsistencies when processing irregularly shaped 
welds through the weld-location network.

A major contributor to location errors is the weld-location network’s 
limited capability to handle poorly shaped weld extractions, leading to 
reduced accuracy and predictability. The anomalous shapes fall into 
two broad categories: truncated staple shapes that show up as exagger-
ated errors in the y-coordinate (Fig.  10); or blobs that bleed beyond the 
staple shape and disturb location predictions, largely in the x-dimension 
(Fig.  11). In some cases, the errors in location predictions were more 
attributable to mistakes in the welding process or ambiguities in the 
labeling process. For example, a case of imprecisely formed welds is 
shown in Fig.  12, where some staples were not cleanly welded on, 
which affects their labeling and hence their evaluation. Conversely, 
there are also examples of mistakes that are corrected in the detection, 
as shown in Fig.  13, where a partial weld was correctly located as if 
full-shaped.



K. Welbeck et al. Journal of Manufacturing Processes 145 (2025) 571–580 
Table 2
Instance segmentation summary statistics.
 Instance: Per weld-number statistics Global 
 1 2 3 4 5 6 Background  
 Accuracy 0.987 0.906 0.873 0.834 0.722 0.835 0.97 0.96  
 [m]IoU 0.778 0.701 0.636 0.619 0.492 0.60 0.97 0.718  
 Recall 0.784 0.746 0.650 0.696 0.604 0.679 0.999 0.767  
 Precision 0.987 0.906 0.873 0.833 0.722 0.835 0.97 0.899  
 F1 Score 0.872 0.816 0.770 0.756 0.654 0.747 0.985 0.823  
Table 3
Spatial-clustering summary statistics.
 Instance: Per weld-number statistics Instance Semantic 
 1 2 3 4 5 6  
 Accuracy 0.824 0.847 0.844 0.833 0.817 0.834 0.835 0.8345  
 mIoU* 0.822 0.843  
 mPrecision* 0.831 0.834 0.835 0.852 0.846 0.787 0.831**  

Table 4
Segment-clustering summary statistics.
 Instance: Per weld-number statistics Instance Semantic 
 1 2 3 4 5 6  
 Accuracy 0.824 0.847 0.844 0.833 0.817 0.834 0.835 0.8345  
 mIoU* 0.844 0.837  
 mPrecision* 0.834 0.851 0.859 0.848 0.847 0.856 0.849**  

Table 5
Combo-clustering summary statistics.
 Instance: Per weld-number statistics Instance Semantic 
 1 2 3 4 5 6  
 Accuracy 0.820 0.841 0.834 0.833 0.826 0.829 0.832 0.8365  
 mIoUa 0.842 0.843  
 mPrecisiona 0.832 0.846 0.857 0.849 0.849 0.852 0.848b  
a Averaged across 602 samples.
b Averaged across row.

Table 6
Location prediction summary statistics on datasets generated by Combo-Clustering.
 Average error (mm) 0.243  
 Min error (mm) 0.016  
 Max error (mm) 2.488  
 Median (mm) 0.184  
 Standard deviation (mm) 0.268  
 Average standard deviation (mm) 0.258  
 Errors less than:  
 – 1 mm 97.39% 
 – 0.75 mm 95.97% 
 – 0.5 mm 94.07% 
 – 0.25 mm 68.24% 
 – 0.1 mm 19.3%  

3.5. Overall weld detection performance

Table  7 shows a summary of the performance of the proposed GNN-
based weld detection algorithm on the 121 evaluation point cloud 
samples. Its performance is compared against a template-matching 
baseline implementation, which has been susceptible to missing some 
welds and flagging false positives.

In summary, the GNN-based approach demonstrates strong robust-
ness against erroneous detections, effectively avoiding missed welds 
and false positives. Its ability to accurately identify all welds relies 
on the combined effectiveness of the segmentation network and the 
clustering scheme used for weld itemization. Although the regression 
network’s accuracy in predicting weld locations is somewhat lower 
compared to the baseline approach, it still performs well enough in 
most cases: approximately 8% of predictions exceed the 0.75 mm error 
threshold set by the downstream inspection system.
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Table 7
Comparison of weld detections by traditional template-matching method and the 
proposed GNN-based approach.
 Traditional GNN-based 
 Point cloud images 121
 Number of welds (Ground Truth) 582

 Number of welds detected 583 582  
 – Welds missed 12 0  
 – Samples with missed detections 10 0  
 – Misclassified directions on correct detections 0 0  
 – False positives 13 0  
 – Erroneous detections (missed, false positives) 25 0  
 Average error across welds to detect (mm) 1.19897  
 Average error across correct detections (mm) 0.00175 0.2612  
 Max error (mm) 7.3831  
 Standard deviation (mm) 0.905  
 Error > 0.75 mm Across correct detections 0 42 (7.2%)  

Fig. 10. An example of detecting an incomplete staple-shape weld. (a) The gray-scale 
intensity image (top) and ground-truth weld locations overlaid on a 2D normal map 
(bottom) of the scan. (b) The weld-location predictions overlaid on the aggregated plot 
of post-segmentation weld extractions (top) and the per-weld absolute and decomposed 
errors in the predicted locations (bottom). The 5th detected weld has a truncated staple 
shape, showing evidence of deferring to Segment-Clustering. The incomplete shape 
causes an error in the predicted location of approximately 7.5 mm, which is largely in 
the y-dimension.

3.6. Computation time

Training and evaluation was processed on an HP Z2 G5 Workstation 
with Nvidia RTX A6000 (16G) GPU. The proposed GNN-based pipeline 
takes an average of 0.82 s and a maximum of 0.97 s to predict the 
weld locations for each point cloud image. This includes generating 
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Fig. 11. An example of detecting an ill-formed staple-shape weld. (a) The gray-scale 
intensity image (top) and ground-truth weld locations overlaid on a 2D normal map 
(bottom) of the scan. (b) The weld-location predictions overlaid on the aggregated plot 
of post-segmentation weld extractions (top) and the per-weld absolute and decomposed 
errors in the predicted locations (bottom). The yellow weld has a bloated shape that 
encroaches into the green weld, the result of which is a 6 mm error in predicted 
location, predominantly in the x-dimension.

Fig. 12. An example of low-quality labeling. (a) The labeled 2D normal map (bottom) 
shows coarsely adjusted labels on the 3rd and 4th welds from the left, which are 
blurry in the normal map indicative of their lower quality. The x-dimension of the 
labels were particularly challenging. (b) The errors in predictions (bottom) for these 
welds of roughly 2 mm are hard to defend because of the ambiguous labeling.

output prediction files for the segmentation and location stages of 
the pipeline, and accompanying plots. By comparison, the baseline 
alternative executed its weld detection and weld inspection on the 121 
test samples in 1.97 s, on average (between 1.517 to 2.821 s), which 
leaves roughly 1 s within which an inspection-only version can be 
paired with the GNN-based detector to meet the same rate.
579 
Fig. 13. Location detections on a sample with one partial weld. (a) The gray-scale 
image shows a clear partial shape of the rightmost weld. (b) The partial weld location 
is predicted correctly, within the acceptable limits, but the direction of the full-shaped 
weld is misclassified.

4. Conclusion

The study introduces a graph neural network-based approach for 
detecting welds in automotive assembly, focusing directly on 3D point 
cloud data without relying on supplementary inputs like point normals 
or intensity information. The proposed system effectively mitigates 
some limitations evident in the baseline template-matching raster-
search implementation, which, when confused by the variability in 
weld appearance and quality, misses some detections and reports some 
false positives.

A key contribution of this work lies in the chaining of two spe-
cialized GNN models: one for segmentation and another for weld 
localization. This decomposition not only allows for improved detection 
accuracy but also enhances interpretability, which is particularly desir-
able for deep learning deployments in industry. This design shows that 
complex point cloud operations can be broken into simpler, explainable 
stages without losing effectiveness, contrasting against end-to-end deep 
learning networks that lack this level of transparency.

The successful validation of this GNN-based pipeline on staple-
shaped welds demonstrates its ability to generalize across varying weld 
conditions and suggests strong potential for broader application to 
different weld patterns and shapes and in other industrial contexts. The 
methodology contributes new insights into the application of graph-
based learning to unstructured data, and highlights a practical benefit 
of GNNs in manufacturing environments, namely processing sparse, 
unstructured, interrelated data effectively.

Having demonstrated the suitability of a two stage GNN network 
to segment and extract itemized weld clouds, and to locate the weld 
centers thereafter, there still remains the process of searching the space 
of hyper-parameters encountered along the way for a globally opti-
mal combination. Key among these hyper-parameters are the DBSCAN 
parameters, and the counts and sizes of the layers in the respective 
GNNs. A necessary objective is to increase the model’s expressivity, but 
balanced against its efficiency. Relatedly, re-framing the second stage 
network as a classification problem instead of regression could improve 
detection accuracy albeit with relaxed, but acceptable, precision. And 
finally, we propose to integrate downstream quality inspection directly 
into the GNN-based framework, creating a full-service and robust de-
tection and inspection system. A short term prospect is to marry the 
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relative strengths of the GNN-based pipeline and the template-matching 
algorithm for production use imminently.
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