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ABSTRACT

The dynamic characteristics of near field levitation bearings have been investigated in this study. Through theoretical analysis, two different
types of system stiffness are defined and derived analytically. The dynamic stiffness relates the excitation amplitude to the dynamic force
amplitude, while the effective stiffness governs the time-averaged force-displacement relationship. The results indicate two non-linear and
asymmetric spring constants that can effectively predict levitation force and height. The models are verified with a carefully designed experi-
mental setup to eliminate the structural resonance effect. Besides, some unique dynamic behaviors are investigated and predicted based on

the proposed stiffness model.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0051372

Non-contact transmission, such as air and magnetic bearings, has
been widely adopted for their high-speed operation, low heat genera-
tion, low friction, zero backlashes, etc. The application of these bear-
ings, however, is still limited by their high cost, complex system design,
undesired noise, and especially the difficulty in miniaturization.

An alternative non-contact bearing technology has been pro-
posed and advanced based on near field acoustic levitation (NFAL)."
When two very closely placed parallel surfaces (in the range from tens
to several hundred micrometers) are cydlically squeezing the thin air
film in between at a high frequency (from several thousand Hertz to
an ultrasonic frequency), the time-averaged reaction force from the air
medium will be non-zero due to the increased viscosity at a smaller air
gap. Therefore, the symmetric and periodic vibration will produce an
asymmetrical reaction force, resulting in a substantial levitation force
to balance the gravity to achieve non-contact support. This effect is
referred to as near field acoustic levitation (NFAL), which has led to
alternative designs of non-contact bearings or motors.”

Based on near field acoustic levitation (NFAL), linear transporta-
tion has been achieved by integrating traveling waves generated by
flexural vibration.” If the levitated object itself is the vibration source,
self-levitation can be achieved with unconstrained two-dimensional
motion.” When the two squeezing surfaces are designed to be curved
or circular, non-contact rotary bearings can be realized to support
both radial and axial loads.” Besides, by coupling the longitudinal and
bending modes, the rotary bearing can be transformed from a passive
bearing to an active motor by generating bi-directional rotation.”

Dynamic behaviors of NFAL bearings are of particular impor-
tance and interest for the industrial application of the technology but
have not been well studied. Notably, Minikes et al.” derived an analyti-
cal expression of levitation force based on a perturbation solution to
the Reynolds equations. Li et al.” discussed the gas inertia and edge
effect on NFAL. Melikhov et al. investigated the influences of transi-
tion visco-acoustic domain.'” However, these works were focused on
the levitation mechanism and pressure distribution rather than
system dynamics. Some rare studies were presented by Bucher and
co-workers,' "> where the slow and coupled dynamics of a levitated
mass were considered.

There has not been a successful attempt to give an analytical
expression of bearing stiffness for NFAL. The lack of previous research
on dynamic modeling is mainly due to the complex and coupled
hydrodynamic equations, which cannot be easily decoupled or analyti-
cally solved. Besides, the system behavior is highly non-linear, which is
very challenging in the experimental design for model verification.
However, in the prototype design of NFAL devices, an analytical solu-
tion that can intuitively approximate the quasi-static and dynamic per-
formance of NFAL will provide tremendous benefits in future research
and technical innovation in NFAL. Against this background, we pro-
pose a mass-spring model to characterize the system dynamics with
two unique system stiffness variables.

The NFAL system can be represented by a spring-mass model as
illustrated in Fig. 1(a). The bottom circular surface provides a pre-
scribed vibratory excitation, while the top surface of the same area
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FIG. 1. (a) Schematic of the stiffness model; (b) linear approximation of the
dynamic force amplitude at 9 kHz; and (c) frequency correction constant ®@y.

with a mass m is supported by a virtual spring resulted from the air
hydrodynamics. The overall air film thickness can be represented by
the summation of an average levitation height and the relative vibra-
tion of two parallel surfaces,

h(t) = h(t) — h(p). 1

The overbar indicates a time-averaged value, while the tilde sym-
bol indicates a harmonic vibration with its average value equals to
zero. Here we assume that the high-frequency variation, h(t), is purely
due to the lower surface vibration (actuation), while the levitated
object does not oscillate. This assumption is fairly accurate at a high
vibration frequency or large levitation mass. In our experiments, with
a 1.35-g levitated object, the responsive vibration from the levitated
object will be less than 10% of the actuation amplitude when excited
above 6 kHz.

The unique dynamic behaviors of NFAL result in two stiffness
variables that characterize the system. When h < h, the responsive
force experienced by the levitated object can also be separated into a
time-averaged term and a dynamic term as follows:

h
F(t) = F + Fonp(t) = J K(R)dh + k(). 2

The dynamic stiffness, k, is valid for the harmonic excitation at a
high frequency with a very small squeeze ratio &, which is defined as
the ratio of vibration amplitude to the average air film thickness
App/h. The dynamic stiffness governs the instantaneous force
response to the levitated object, whereas the effective stiffness, K,
describes the time-averaged displacement—force response, which is the
change of time-averaged levitation F due to any additional low-
frequency or quasi-static modulation motion added to the existing
high-frequency vibration. The effective stiffness resembles more of the
conventional definition of bearing stiffness, which relates external
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force to air gap change; however, it depends on the existence of high-
frequency vibration.

The derivations of k and K are given as follows. The pressure dis-
tribution in NFAL for a circular surface can be derived by solving the
compressible Reynolds equations in polar coordinates,”

9 3@) B J(ph)
or (p’h ar) =g

h=h-— App sin (27ft),
B.C.p(R,t) = pa; p(r,0) = pa; p'(0,£) = 0,

where 7 is the radial coordinate and p(r,t) describes the pressure distribu-
tion at location r and time instance ¢. Other physical constants include
the atmospheric pressure p,, time-averaged levitation height 7, levitated
object radius R, and dynamic viscosity of air #. Following the definition
in Eq. (1), the air film thickness is perturbed by a small harmonic vibra-
tion characterized by the vibration amplitude A,,,, and frequency f.

The pressure distribution p(r,t) is calculated using the finite dif-
ference method and integrated over the whole surface area to get the
reaction force,

(©)

R
F(t) = J 2np(r, t)rdr ~ F + Fampei(2“ﬁ+¢). (4)
0
We calculated the dynamic force amplitude defined in Eq. (4)
under a wide set of process conditions. These conditions are specified
in Table I, which are set according to the achievable range in our pro-
posed experimental setup. We find the dynamic force is independently
governed by the squeeze ratio ¢ = Amp/ﬁ and excitation frequency. If
we compare the squeeze ratio to the normalized dynamic force, it fol-
lows a linear relationship with a constant slope @ for a given particu-
lar excitation frequency as shown in Fig. 1(b), where the local
deviations are indicated by the color scale. This linear relationship
holds true when the small-amplitude vibration assumption is valid
(¢ < 0.05). The excitation frequency will influence the slope value @4
which can be approximated by a hyperbolic tangent function shown in
Fig. 1(c). For most of the working conditions of NFAL (high-frequency
assumption above 6 kHz with a similar or larger object surface area),
the frequency correction term @y can be regarded as a constant. For the
simulated conditions listed in Table I, Dy is determined to be 0.77 at
9 kHz. For the general operating conditions of NFAL devices especially
at an ultrasonic frequency, @, can be simply assumed to be a constant
between 0.8 to 1. See the supplementary material for further discussion
on the physical meaning of the frequency correction factor @y
By linearizing the solutions to the Reynolds equation using the
derived frequency correction constant @ the force-vibration ampli-
tude relationship and the corresponding dynamic stiffness can be
derived as follows:

~ R2p,®
Fomp = nRp@pe = L g
(5)
R2p,®
() ="

From the results presented in Eq. (5), the dynamic stiffness is
inversely proportional to the levitation height. It can be approximated
as a non-linear and asymmetric air spring. The variation of dynamic
stiffness k is plotted in Fig. 2(a) for the vibration amplitude of 1 um
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TABLE I. Simulation parameters.
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Frequency f (kHz) Viscosity 1 (Pa-s) Object radius R (mm)
0.5,1,1.5...,12 1.81x107° 12.7
Atmospheric pressure (Pa) Vibration amplitude A,,,, (um) Levitation height & (um)
1.01 x 10° 0.1,0.2, ..., 1 20, 21, ..., 50

and the excitation frequency at 9kHz. The spring will be hardened
with the squeeze motion and softened with the release motion, thus
resulting in a net positive time-averaged levitation force, as illustrated
by Fig. 2(b).

The change in levitation force concerning the varying average
levitation height is determined by another effective stiffness K, which
governs the low-frequency performance of NFAL bearings (or the
behaviors of modulation motion).

By integrating the dynamic force over a vibration cycle, the effec-
tive stiffness can be derived as

1

i )
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FIG. 2. Calculated (a) dynamic stiffness k at 9kHz and A, = 1 um (b) force-
displacement curves at 9kHz and A, = 1 um. (c) effective stiffness K and (d)
levitation force-height curves.

The change of levitation force due to a displacement input then
can be derived as

h 2 2
F= J K(h)dh = ﬂp“—if‘q"’f’, )
) 2h
where the integral from oo to 1 indicates the loading from infinity (no
force) to the current levitation height /.

The effective stiffness K is proportional to the square of the exci-
tation vibration amplitude and inversely proportional to the cubic of
the average levitation height. The calculated stiffness curves under two
different vibration amplitudes and excitation frequencies are given in
Fig. 2(c). It also verifies the assumption that the stiffness is frequency
insensitive at high excitation frequencies. The characteristics of levita-
tion force are plotted in Fig. 2(d), indicating an inverse square & — F
relationship. When compared to the derived result of dynamic stiff-
ness k, the effective stiffness K is scaled by the square of squeeze ratio
¢. Considering the small squeeze ratio assumption, the effective stiff-
ness is 2-4 orders of magnitude smaller than the high-frequency stiff-
ness. Though the presented effective stiffness K is small, our setup and
simulated conditions are not designed to achieve maximum efficiency.
If the same analysis is applied to the design of Li et al.’ the calculated
effective stiffness K can reach up to 6 N/um scaled with the surface
area and required input power. This result is comparable to a commer-
cial air bearing (LRAP100, Specialty Components, USA).

To verify the model accuracy and to obtain reference results for
comparison, an experimental setup is built as shown in Fig. 3(a). The
actuator is designed to have a much higher resonant frequency beyond
the test frequency range, so the structural resonance can be avoided. In
addition, it has been validated that the vibration amplitude follows a
linear relationship with the input voltage amplitude from 0 to 12 kHz,
while the center and edge have the same measured vibration amplitude
(no resonant mode). The levitated object is a diamond-turned alumi-
num disk with a diameter of 25.4 mm, a thickness of 1 mm, and a sur-
face roughness smaller than 0.02 um (Ra). To limit the horizontal
position variation of the levitated object, three magnetic rods are
placed around the actuator. During the experiments, a sinusoidal sig-
nal is generated by a DAQ card (PXIe-6366, NI, USA), which is ampli-
fied by an amplifier (PX200, Piezodrive, AUS) to drive the actuator.
The displacement of levitated object, which contains the information
of levitation height and vibration amplitude, is measured using a laser
doppler vibrometer (CLV-2534, Polytec, USA), which is recorded by
the same DAQ card at a sampling frequency of 1 MHz as shown in
Fig. 3(b).

To evaluate the model accuracy, the predicted levitation height
was first compared with experimental results to validate the dynamic
stiffness. Since the dynamic force cannot be directly measured, the lev-
itation height is used as comparison metrics by applying a known
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FIG. 3. (a) Experimental setup and (b) schematics of the actuator and measure-
ment devices.

weight to the levitated object. The levitation height then can be analyti-
cally predicted by solving Eq. (7) as

nRzpa (DfAfn P
2mg

h= (8)

The 1 mm thick aluminum plate weighed at 1.35g, while the
vibration frequency was set at 9kHz. The predicated and measured
levitation heights under different excitation amplitudes are compared
in Fig. 4(a). The levitation phenomenon has been observed when the
vibration amplitude exceeds 0.5 um, which is specific to the load mass.
As predicted, the levitation height shows almost a linear relationship

with the excitation amplitude. As observed in our previous experi-
ments, the levitation height solved directly by the Reynolds equations

ARTICLE scitation.org/journal/apl

is often an overestimate since the levitation height has to be pre-given
as a known condition to solve the differential equations for the pres-
sure distribution. The time-averaged dynamic behavior of NFAL can-
not be directly captured in the Reynolds equations, while the proposed
model based on an equivalent non-linear and asymmetric spring gives
a more accurate prediction.

The second set of experiments measures the levitation height
while changing the levitation mass, which can directly verify the effec-
tive stiffness K. For NFAL bearings, an important concern is that how
the levitation height will change when the load is varied. By utilizing
Eq. (8), where the levitation force is given as the prescribed load, the
predicted levitation height can be obtained. In the experiments, we
controlled the levitation force by adding mass in a quasi-static manner.
The additional mass at the increment of 0.35 g was attached to the top
side of the aluminum plate. The overall tested range was from 1.35 g to
2.75g. The predicted and experimental results are compared in Fig.
4(b), which agree with each other. For a given excitation amplitude,
the levitation height is inversely proportional to the square root of the
load.

It is interesting to compare the results presented in Fig. 4(b)
(compliance as the local slope) and the calculated effective stiffness
presented in Figs. 2(c) and 2(d). First, the effective sli3ffness increases
rapidly with the decrease in the levitation height (1/h"), as evidenced
by the almost flat slope toward the right end of the curves in Fig. 4(b).
Second, the effective stiffness, in theory, can be enhanced by either
increasing the excitation vibration amplitudes or decreasing the levita-
tion height as shown in Fig. 2(c). In a free levitation configuration,
however, these values are coupled. Increasing the excitation ampli-
tudes will also increase the levitation height if the load is unchanged,
thus having a complex influence on the final stiffness.

Another major performance index is the sensitivity of NFAL
bearings to the dynamic external disturbance. Particularly we experi-
mentally investigate the levitation height variation due to the external
displacement input at various frequencies. In this set of experiments,
an additional sinusoidal modulation motion is added to the existing
high-frequency excitation vibration of the bottom surface. The

@ s ®s4 v
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g g e .
=240} 12 $ ¢
£ 5 30} ¢
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FIG. 4. Model verification results of predicted levitation height given different (a) excitation amplitudes and (b) levitated loads.
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disturbance.

modulation can be regarded as a harmonical disturbance input, while
the variation of the levitation height is measured. The frequency range
of the modulation was set from 200 Hz to 2000 Hz. This frequency
range is well below the dominant excitation frequency of 9kHz to
avoid aliasing and will not generate additional levitation force. Fig.
5(a) shows the measured vibration profiles when a modulation at
1200 Hz was added. The experiment conditions are summarized in
Table I1.

According to the transfer function of a second order system, as
presented in Fig. 1(a), the frequency response of the system (defined as
the ratio of response to disturbance modulation amplitudes Y /X,)
can be derived as

TABLE II. Experiment parameters for disturbance response analysis.

Base vibration amplitude A,,, (um)  Excitation frequency f (Hz)

0.25, 0.375, 0.5 9000
Modulation amplitude X,; (um) Modulation frequency f; (Hz)
1.0 200, 300, ..., 2000

scitation.org/journal/apl

%

TR W + j2mcfih

T [
TRp,Qpe? — 4m>mfih + j2ncfih ©)

Tubs (fd)

where the floating height % is determined by Eq. (8). The damping
ratio ¢ is approximated following Ilssar and Bucher’s work,'' which is
given by

. 3R ue
20’

The experimental and predicted results of the frequency
response (Y4/X4) are compared in Fig. 5(b). From the results, for
our particular setup, the system can be characterized as an over-
damped second-order system, which shows no practical resonant
frequency. The situation might be different if the levitated mass is
much larger (with a presented resonant frequency for the air-mass
system). The deviation of the predicted curves from the measured
results is partly due to the simple assumption of the damping ratio,
which might be a complex term with a velocity dependence. It is
interesting to note that by increasing the excitation vibration
amplitude, the system response actually attenuates faster due to
the increased average levitation height (thus decreased dynamic
and effective stiffness). When looking at the —3 dB threshold value,
the worst-case scenario shows a 900 Hz bandwidth, which is quite
impressive for industrial applications. This implies that if an
impulse disturbance is applied, the system will return to the origi-
nal balanced position much faster.

In summary, a dynamic model for NFAL is proposed in this
study to define two system stiffness variables. The analytical solutions
are derived for the two types of stiffness based on linearized solutions
to the Reynolds equations. It can be concluded that:

(10)

(1) The dynamic stiffness k is a reciprocal function of levitation
height. It represents a non-linear and asymmetric spring, which
hardens when squeezing the air while softens when releasing.
The dynamic stiffness relates the excitation amplitude to
dynamic force, but only at the excitation frequency for a very
small squeeze ratio.

(2) The effective stiffness K characterizes the relationship between
the levitation force and average height, which is more closely
related to the conventional definition of bearing stiffness. It is
inversely proportional to the cubic of levitation height and
relates to the high-frequency stiffness by the square of squeeze
ratio.

(3) The modeled system demonstrates potential high stiffness at
low levitation height, which will be comparable to commercial
air bearings if scaled up with power and surface areas. It also
demonstrates good bandwidth under dynamic disturbance,
which is beneficial for industrial applications.

See the supplementary material for the discussions on the physi-
cal meaning of frequency correction constant @ detailed experimental
setup, and additional experimental data.
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