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A B S T R A C T

Compliance-based matrix method (CMM) has been regarded as an efficient technique for output compliance
modeling of the flexure hinge-based compliant mechanism, owing to its simplicity and high accuracy. However,
this study demonstrates that CMM is not always valid due to the intrinsic ill-condition of the compliance matrix
of right circular flexure hinge (RCFH). Inversion of compliance matrix can result in numerical instability in the
calculation of its stiffness matrix. It is shown in this study that CMM can be effectively applied to serial compliant
mechanism, while its adoption in modeling parallel compliant mechanism needs to be carefully examined due to
the matrix inversion involved. The validity of CMM is highly dependent on the spatial configuration, degree of
freedom, and singularity of the parallel mechanism. The validity criteria of CMM are discussed in detail with
exemplary configurations of 3RRR, 2RR, and bridge-type compliant mechanisms.

1. Introduction

Flexure-hinge mechanisms are composed of rigid links and flexure
hinges, which are capable of transmitting smooth micro motions
through the elastic deformation of flexure hinges [1]. Due to their
unique and superior motion transmission properties including zero
backlash, zero friction, and low wear, compliant mechanism designs
have emerged as a promising and reliable technique for precision en-
gineering applications, such as vibration cutting tools [2,3], scanning
electron and atomic force microscopy, micro assembly, nanoimprint
lithography [4], biological cell micro-injection [5,6], etc.
Modeling the deformation of compliant mechanism, including ki-

nematic, static, and dynamic behaviors, is vital for its structure analysis
and dimension synthesis during the design stage. Output compliance
(inverse of stiffness), which characterizes the relationship between the
applied loads on the output platform and its deformation, is one of the
most important performance index that needs to be accurately modeled.
For example, the output compliance of a vibration cutting tool com-
posed of compliant mechanism is critical for determining its cutting
performance and stability.
Analytical modeling and finite element method (FEM) are the two

most commonly used techniques in output compliance modeling. Due
to its high accuracy and flexibility, FEM is usually regarded as a reliable

method to model complex structure dynamics. It, however, cannot es-
tablish the analytical relationship between the output compliance and
the dimensions and spatial configurations of compliant mechanism [7].
Consequently, FEM is appropriate as a tool to verify the performance of
compliant mechanism once the specific dimension and spatial config-
uration have already been determined [7]. More often, FEM is utilized
for the comparison among different analytical modeling methods rather
than for the dimension synthesis of compliant mechanism. Analytical
modeling approaches, on the other hand, are preferred for the dimen-
sion synthesis of compliant mechanism. Among various analytical
modeling methods including the pseudo-rigid-body method [8] and
Castigliano's theorem [9], compliance-based matrix method (CMM) can
be regarded as a reduced FEM [5]. Compared to the pseudo-rigid-body
method, the matrix method is capable of complete compliance analysis
since it considers the flexure compliances in all working degrees of
freedom [10].
Due to its simplicity and capability of modeling complex structures,

CMM has been widely utilized in modeling of various compliant me-
chanisms. Pham and Chen developed a general modeling approach
based on CMM for compliance modeling of flexure mechanisms, and
successfully applied the model to a double linear spring and a three
degree-of-freedom (DOF) translational parallel mechanisms with FEM
and experiment verification [7]. Choi and Lee derived a static model

https://doi.org/10.1016/j.precisioneng.2019.02.006
Received 18 October 2018; Received in revised form 3 January 2019; Accepted 6 February 2019

∗ Corresponding author.
E-mail address: ping.guo@northwestern.edu (P. Guo).

Precision Engineering 56 (2019) 485–495

Available online 12 February 2019
0141-6359/ © 2019 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01416359
https://www.elsevier.com/locate/precision
https://doi.org/10.1016/j.precisioneng.2019.02.006
https://doi.org/10.1016/j.precisioneng.2019.02.006
mailto:ping.guo@northwestern.edu
https://doi.org/10.1016/j.precisioneng.2019.02.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.precisioneng.2019.02.006&domain=pdf


using CMM for a flexure-based mechanism driven by piezo actuators
[11]. Lobontiu utilized the matrix method to model the direct and in-
verse quasi-static response of constrained/over-constrained planar
mechanisms, the results of which were verified by FEM [12]. Jia et al.
developed a 3-DOF positioning stage for nanoimprint lithography, and
modeled the stiffness of compliant mechanism using CMM [4]. Yong
and Lu employed the matrix method to conduct kinetostatic modeling
of a 3-RRR compliant micro-motion stage composed of flexure hinges
[6]. Zhu et al. developed a 2-D vibration cutting tool using flexure
mechanism, and adopted CMM to construct the tool-tip compliance
matrix [2]. They also presented an optimized design of a piezo-actuated
multi-axial compliant structure for micro-/nano-cutting with the help of
CMM [13,14].
The modeling accuracy of the overall output compliance of parallel

mechanism using CMM strongly depends on the modeling accuracy of
individual right circular flexure hinge (RCFH) [15]. Various methods
including inverse conformal mapping [16], Castigliano's second the-
orem [17], and the integration of linear differential equations of beams
[18], have been used to estimate the compliance matrix of flexure
hinges. Yong et al. [15] compared the calculated compliance from
various analytical models for circular flexure hinges with the FEM re-
sults, including the equations developed by Paros and Weisbord [18],
Lobontiu [19], Wu and Zhou [20], Tseytlin [16], Smith et al. [21] and
Schotborgh et al. [22]. According to their results, the accuracy of these
compliance equations is inconsistent at different radius R to neck
thickness t ratios (see Fig. 1 for hinge geometries). In certain circum-
stances, the calculation errors would even be as high as 40%. They also
assessed the estimation accuracy of compliance matrix of RCFH on the
output compliance of a particular 3RRR mechanism [6]. However, the
assessment in their research was performed just for a particular instance
without considering the influence of different spatial configurations.
The spatial configuration of compliant mechanism determines the
motion and force transmission between input and output pairs, which
has a decisive impact on the modeling accuracy and validity of the
matrix method. The relationship between the spatial configuration and
modeling accuracy has not been well investigated in previous research.
As this study is to show, the matrix method is indeed not always valid in
many cases.
This study presents the validity assessment of CMM in the output

compliance modeling of flexure-hinge mechanism, particularly in an
attempt to answer the question that how the spatial configuration af-
fects the validity of the matrix method. Firstly, the intrinsic ill-condition
of compliance matrix expressed in its local coordinate frame of RCFH is
discovered. The effect of compliance accuracy on the calculation error
of stiffness factors for RCFH by matrix inversion is derived. Then the
effect of matrix ill-condition on the modeling accuracy of output

compliance for both serial and parallel compliant mechanisms is ana-
lyzed. The 3RRR, 2RR and bridge-type compliant mechanisms are taken
as calculation examples to evaluate the validity of CMM. A general
criterion is proposed to determine whether the matrix method is valid
for output compliance modeling of flexure mechanism, with con-
sideration of the mechanism type (serial or parallel), spatial config-
uration, degree of freedom, and mechanism singularity.

2. Theoretical analysis on validity of CMM

2.1. Intrinsic ill-condition of compliance matrix of RCFH

As shown in Fig. 1(c), the compliance matrix CRCFH of a RCFH in its
local coordinate system represents the compliance of free end Oi with
respect to the other fixed end. It can be expressed as a 3× 3 matrix as:
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The compliance factors Cij (i,j=1,2,3) in the matrix can be derived
as a function of geometric parameters and material properties of RCFH
[15], namely =C f R t b E( , , , , )ij ij . Due to the coupled deformations of a
RCFH, the compliance factors Cij are not all mutually independent.
Actually, C23 and C32 depend on C33, namely = =C C C R23 32 33 [15].
Among the five compliance factors, only C11= Δx/Fx, C22= Δy/Fy, and
C33= Δα/Mz are independent variables that can be calculated following
the derivations shown in Appendix A.
Theoretically, the stiffness matrix KRCFH of RCFH can be derived by

inversing the compliance matrix CRCFH:
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where Kij (i,j=1,2,3) are the stiffness factors of KRCFH, which can be
calculated according to the equations derived in Appendix A.
However, based on the matrix theory, matrix inversion should be

carefully carried out due to its potential instability [23]. If a matrix is
ill-conditioned, a tiny variation of its element would induce huge var-
iations in its inverse. The matrix inversion can result in unacceptable
calculation errors leading to the large deviation of stiffness matrix es-
timation in actual engineering application. In Eq. (1), the compliance
factors of RCFH obtained by analytical calculation or FEM are not al-
ways accurate with respect to their true values [15]. In some circum-
stances, the calculation errors of these equations of RCFH compliances
would be as high as 40% [15]. Hence, the inverse operation of CRCFH as
illustrated in Eq. (2) should always be carefully carried out as demon-
strated in the following examples.

Nomenclature1

CMM compliance-based matrix method
RCFH right circular flexure hinge
R radius of RCFH
t neck thickness of RCFH
b thickness of RCFH
Δα rotational motion about the z-axis
Δy translational motion in the y-axis
Δx translational motion in the x-axis
Mz rotational motions about the z-axis
Fx force in the y-axis
Fy force in the x-axis
CRCFH compliance matrix of RCFH

KRCFH stiffness matrix of RCFH
Cij compliance factor in ith row and jth column of CRCFH
Kij stiffness factor in ith row and jth column of KRCFH
Cserial compliance matrix of serial compliant mechanism
Cparallel compliance matrix of parallel compliant mechanism
Cname,ij the element at the ith row and jth column of Cname; ‘name’

can be substituted by the particular compliant mechanism
name, such as serial, parallel, bridge, 3RRR, 2RR, etc.

Ti
0 transformation matrix from frame xiOiyi to reference frame

xOy which is attached to the output platform
T j

i transformation matrix from frame xjOjyj to reference frame
xiOiyi

E elastic modulus of RCFH material
v Poisson's ratio of RCFH material

1 Note: Vectors and matrices are shown in bold face
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Fig. 2 shows the effects of compliance variation of RCFH on the
stiffness variation of RCFH obtained by matrix inversion, where
E=210GPa, ν=0.3, R=1mm, t=0.5mm, and b=5mm. As shown
in Fig. 2(a), the variation of K11 is linearly related to the variation of
Δx/Fx. That is to say if the variation of Δx/Fx is tiny, the variation of K11
is also small. The variation of Δy/Fy and Δα/Mz, on the other hand, can
induce extremely large variations of K22, K23 and K33. When the relative
variation of Δy/Fy reaches only 1%, the relative variation of K22, K23
and K33 can exceed 80%. When the relative variation of Δα/Mz is only
0.3%, the relative variation of K22, K23 and K33 can even reach up to
3500%. These results indicate that the compliance matrix CRCFH of
RCFH is extremely ill-conditioned. CRCFH is usually ill-conditioned due
to the specific structure of RCFH. The rotational compliance of RCFH is
much larger than the compliances in other directions, making the dif-
ferent elements of CRCFH vary in magnitudes. A tiny calculation error of
Δy/Fy and Δα/Mz with respect to their true values would induce un-
acceptably large calculation error of stiffness factors. Fig. 2 also in-
dicates that the ill-condition of RCFH compliance matrix is highly re-
lated to the tangential translational compliance (Δy/Fy) and rotational
compliance (Δα/Mz).
Though the analysis above is based on the compliance equations of

RCFH, which is a particular type of notch flexures [24,25], the con-
clusions are also applicable to most types of flexure designs. For ex-
ample, the compliance factors of general notch flexures are usually not
well balanced due their specific design for enhancing the rotational
degree of freedom. The rotational compliance of notch flexures is much
larger than the compliances in other directions, making the matrices ill-
conditioned as well. Moreover, the compliance matrix of leaf spring
flexure hinge, which has straight beams of uniform cross-sections, is
also ill-conditioned based on the same principle above. It is also worthy
to note that the inversion problem cannot be easily overcome by using
the stiffness matrix. The stiffness matrix is usually obtained from the

inversion of compliance matrix since it is more difficult to derive the
stiffness matrix elements by their direct definition. In addition, if the
compliance matrix is ill conditioned, the stiffness matrix will be also ill
conditioned, because they share the same condition number with each
other [23].

2.2. Validity evaluation method of CMM for the output compliance
modeling of flexure mechanism

For compliant mechanism composed of serially and parallelly con-
nected RCFHs, the calculation error of compliance matrix of RCFHs is
accumulated and added to the final modeling error of the overall output
compliance. The validity of CMM is established based on the in-
sensitivity of the output compliance variation on the variation of
compliance factors of individual RCFHs.
As shown in Fig. 1, the compliant mechanism can be classified into

two categories, namely the serial and the parallel compliant mechan-
isms. The output compliances of these two types can be expressed by:
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where Cserial and Cparallel represent the output compliance matrices of
serial and parallel flexure mechanisms respectively. Detailed derivation
of Eq. (3) and expressions of transformation matrices can be found in
Appendix B.
According to Eq. (3), the compliance factor C ijserial, of Cserial can be

derived as:

= + +C C C Cij ij ij ijserial,
11

11
22

22
33

33 (4)

Fig. 1. Flexure hinge-based compliant mechanism of (a) serial and (b) parallel types; and (c) coordinate system of a right circular flexure hinge (RCFH).

Fig. 2. Effect of compliance variation of RCFH on the stiffness variation of RCFH obtained by matrix inversion.
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where C ijserial, is the compliance factor at the ith row and jth column of
the matrix Cserial; ij

11, ij
22, and ij

33 are the corresponding coefficients of
RCFH compliances. As illustrated by Eq. (4), the output compliances of
serial flexure mechanism are the linear superposition of RCFH com-
pliance factors without introducing any matrix inversion operation. The
calculation errors thus are bounded given that the RCFH compliances
are calculated with acceptable accuracy.
However, as illustrated in Eq. (3), the inversion of compliance

matrix is always required to calculate the output compliance matrix
Cparallel of parallel flexure mechanism. Because of its indispensable
matrix inverse operation, the calculation error of output compliance of
parallel flexure mechanism might be extremely large due to the ill-
condition of individual compliance matrix as demonstrated in section
2.1. In order to evaluate the validity of the matrix method in the output
compliance modeling of parallel flexure mechanism, the effects of the
variation of individual RCFH compliance factors on the accuracy of
final output compliance are assessed based on the following equation:

=C
C

Cij
ij

ij
parallel,

parallel,

parallel, (5)

where ΔCparallel,ij donates the relative variation of calculated output
compliance due to the compliance variation of RCFH induced by
modeling error. The variation of output compliance C ijparallel, is calcu-
lated based on the following rules. When the effect of one compliance
factor Cij (such as C11) is to be evaluated, the variation is set to 5%,
while keeping the other two compliance factors (such as C22, C33) un-
changed.
Based on the above analysis of Eq. (3), the matrix method is always

valid in the output compliance modeling for serial flexure mechanism.
Therefore, this study focuses on the validity evaluation of CMM for
parallel flexure mechanism. The evaluation results for typical parallel
mechanisms including 3RRR, 2RR and bridge-type are demonstrated in
section 3.

2.3. Validity condition of CMM for output compliance modeling of parallel
flexure mechanism

The potential invalidity of CMM results from the ill-condition of
compliance matrix of RCFH and the matrix inversion operations during
calculation. The compliance matrix of RCFH is usually ill-conditioned;

however, the matrix method has still been successfully utilized for
analysis of many kinds of parallel flexure mechanisms as illustrated in
the introduction. The accuracy of overall output compliance is not only
influenced by the inversion error due to the matrix ill-condition, but
also related to the spatial configuration of parallel mechanism. It turns
out that the inversion error can be bounded if certain configuration
conditions are met even with the ill-conditioned compliance matrices of
individual RCFHs.
The ill-condition of compliance matrix is highly related to the re-

lative magnitudes between the translational compliance and rotational
compliance (as illustrated by Eq. (A. 4) in Appendix A). Only if the
radial translational compliance Δx/Fx or the rotational compliance Δα/
Mz of RCFH is dominant in the output compliance of parallel flexure
mechanism, the CMM is valid. We further examine this hypothesis by
simplifying the RCFH as a revolute pair with only the rotational DOF.
The overall DOF of any parallel flexure mechanism then can be de-
termined according to the DOF analysis theory of parallel mechanism
[26]. When the spatial configuration of parallel mechanism is singular,
rotational compliance of RCFH may lose its dominance. At this time, the
dominance of radial translational compliance of RCFH should also be
checked to determine the validity of the matrix method. If none of the
radial translational or rotational compliance is dominant, the CMM will
be invalid for output compliance modeling.
Although the above validity criteria of CMM cannot be described by

a set of mathematical equations, they provide a general evaluation
method to determine the validity of CMM for parallel flexure-hinge
mechanism with various spatial configurations. Detailed examples are
given below based on 3RR, 2RR, and bridge-type mechanisms to de-
monstrate the validity of the proposed criteria.

3. Case study of CMM validity

Fig. 3 shows the specific spatial configurations of typical 3RRR, 2RR
and bridge-type mechanisms, where DM, Dx and Dy represent the rota-
tional and translational DOFs along the corresponding axes. The DOF
analysis for the above parallel mechanisms will be conducted for va-
lidity evaluation of CMM.

3.1. 3RRR compliant mechanism

The spatial configuration of 3RRR compliant mechanism is

Fig. 3. DOF analysis of 3RRR, 2RR and
bridge-type mechanisms: 3RRR with (a)
0 < |θ1| < π/2 and 0 < |θ2| < π/2, (b)
0 < |θ1| < π/2 and θ2= 0, (c) θ1= θ2
= 0, and (d) θ1= π/2 and θ2= 0; 2RR with
(e) θ≠0 and (f) θ=0; and (g) bridge-type
mechanism.
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illustrated in Fig. 4, where θ1 and θ2 are the relative rotation angles of
adjacent arms. It consists of three RRR chains connected together in
parallel, while each chain is composed of three RCFHs. Due to the
central symmetry of 3RRR compliant mechanism, it has the char-
acteristic of compliance decoupling. Based on compliance-based matrix
modeling, the output compliance matrix C3RRR of 3RRR compliant
mechanism can be derived as:

=
C

C
C

C
0 0

0 0
0 0

3RRR

3RRR,tran

3RRR,tran

3RRR,rota (6)

where C3RRR,tran and C3RRR,rota denote the translational compliance and
rotational compliance of 3RRR compliant mechanism respectively.
Detailed derivation of Eq. (6) is illustrated in Appendix C.1. Fig. 4(c)
shows the FEM model for calculating the output compliance of 3RRR
compliant mechanism. The FEM results are taken as the reference va-
lues when evaluating the accuracy of CMM results in different cases.
Fig. 5 shows the contour plots of output compliance variation of

3RRR compliant mechanism due to the compliance variance of Δx/Fx
and Δα/Mz under different spatial configurations (θ1 and θ2). The
variations of Δx/Fx and Δα/Mz are assumed to be both 5%. As shown in
Fig. 5(a) and (b), the output compliance variations are always smaller
than 5% regardless the spatial configuration of the system. On the other
hand, the variation of Δα/Mz triggers the numerical instability when
calculating the output rotational compliance C3RRR,rota. As demon-
strated in Fig. 5(c) and (d), the relative variation of calculated rota-
tional compliance C3RRR,rota reaches 800% when the spatial angles θ1
and θ2 equal to π/4 and 0 respectively. It indicates that CMM is only
valid for modeling 3RRR under certain spatial configurations. This
validity dependency is further discussed as follows.

(1) Fig. 3(a) shows a general spatial configuration of 3RRR mechanism
where θ2 ≠ 0 and 0< |θ1| < π/2. This spatial configuration has
three DOFs and is away from the singular point. Under such con-
dition, the rotational compliance of RCFH is dominant in the output
compliances of 3RRR mechanism. The CMM can be well utilized in
the output compliance modeling of 3RRR compliant mechanism. In
order to verify the dominance of rotational compliance, the calcu-
lation accuracy of the matrix method is evaluated and compared
with FEM results including two cases. The first case includes all the
translational and rotational compliances of 3RRR mechanism. The
second case contains only the rotational compliance, considering
the dominance of its influence. The specific calculation conditions
of these two cases are listed in Table 1. The calculation results are
demonstrated in Table 2.

As the verification results shown in Table 2, for the general 3RRR
compliant mechanism away from the singular configuration, the

calculation accuracy of CMM is acceptable, even if the individual
compliance matrix of RCFH is ill-conditioned. Furthermore, when the
compliance factors including Δx/Fx or Δy/Fy is neglected in Case 2, the
calculation results of the matrix method do not vary significantly
compared with the results shown in Case 1. This result verifies the
dominance of rotational compliance of RCFH in the output compliance
of 3RRR compliant mechanism for the general spatial configuration
shown in Fig. 3(a).

(2) Fig. 3(b) shows a specific spatial configuration of 3RRR mechanism
where θ2= 0 and 0< |θ1| < π/2. This spatial configuration has
zero DOF and is singular. Neither the rotational or radial transla-
tional compliance of RCFH is dominant in the output compliances
of 3RRR mechanism. The CMM is not suitable to be utilized in its
output compliance modeling of 3RRR mechanism for the spatial
configuration in Fig. 3(b). As shown in Fig. 5(c) and (d), in this
configuration, the relative variations resulting from the tiny varia-
tion of RCFH compliance are extremely large, which indicates the
invalidity of the matrix method.

(3) Fig. 3(c) shows a specific spatial configuration of 3RRR mechanism
where θ1= θ2= 0. This spatial configuration is also singular.
However, since the extended lines of three limbs intersect at the
same point, it has one rotational DOF. The rotational compliance of
RCFH is dominant in the output rotational compliance of 3RRR
mechanism, while the radial translational compliance of RCFH is
dominant in the output translational compliance of 3RRR me-
chanism. As shown in Fig. 5, consistent with the above analysis,
when the rotational compliance or the radial translational com-
pliance is dominant, the matrix method can be utilized in the output
modeling of the 3RRR spatial configuration of Fig. 3(c) with ac-
ceptable accuracy.

(4) Fig. 3(d) shows a special spatial configuration of 3RRR mechanism
where θ2= 0 and θ1= π/2. This spatial configuration has zero
DOF and is singular. However, the radial translational compliance
of RCFH is dominant in the output compliances of 3RRR compliant
mechanism as shown in Fig. 5. The CMM can also be well utilized in
for the case in Fig. 3(d).

3.2. 2RR compliant mechanism

The spatial configuration of parallel 2RR mechanisms is illustrated
in Fig. 6. It consists of two RR chains connected together in parallel.
Each chain is composed of two RCFHs. Based on CMM, the output
compliance matrix C2RR of 2RR mechanism can be derived as:

=
C C

C
C C

C
0

0 0
0

2RR

2RR,11 2RR,13

2RR,22

2RR,31 2RR,33 (7)

Fig. 4. (a) Schematic of 3RRR compliant mechanism; (b) coordinate and dimension definition of one limb of 3RRR compliant mechanism; (c) FEM model.
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where C2RR,ij denotes the ith row and jth column element of the com-
pliance matrix of 2RR mechanism. Detailed derivation of Eq. (7) is il-
lustrated in Appendix C.2.
Fig. 7 shows the output compliance variation of 2RR mechanism

resulting from the variation (5%) of Δx/Fx and Δα/Mz when θ and L are
varying. Fig. 7(a) and (b) are the surface plots of the effect of variation
of translational compliance Δx/Fx on the modeling accuracy of output
compliance factors. The output compliance variations are bounded in
the assessment range of different spatial configurations. While as shown
in Fig. 7(c), the contour plot of compliance variance, the variation of

Δα/Mz induces large numerical error in C2RR,11, which exceeds 70%
when L≈4mm and θ > 0.4. The validity of the matrix method for
modeling 2RR compliant mechanism also depends on its spatial con-
figuration, which is discussed as follows.

(1) Fig. 3(e) shows a general spatial configuration of 2RR mechanism
where θ≠0, which has only one rotational DOF. The rotational
compliance of RCFH is dominant in the output rotational com-
pliance of 2RR mechanism. On the other hand, neither the rota-
tional or radial translational compliance of RCFH is dominant in the

Fig. 5. Effects of compliance variation of RCFH on the output compliance variation of 3RRR compliant mechanism. The geometry parameters and material properties
are set as follows: E=210 GPa, v=0.3, β=0, L1= L2= L3= 3mm, L4= 2mm, R=1mm, t=0.5mm, and b=5mm (see Fig. 4 for 3RRR geometries).

Table 1
Calculation case (m/N, rad/N, rad/Nm) of 3RRR compliant mechanism when t=0.5mm, R=1mm, b=5mm, β=30°, L1= L2= L3= 20mm, L4= 2mm.

Case
Chosen flexure hinge equation Flexure hinge compliance

Δx/Fx Δy/Fy Δα/Mz Δx/Fx Δy/Fy Δα/Mz

Case 1 Wu [20] Wu [20] Sch [22] 2.47× 10−9 8.52×10−8 8.49× 10−2

Case 2 0 0 Sch [22] 0 0 8.49× 10−2

Table 2
Calculation results (m/N, rad/N, rad/Nm) of 3RRR compliant mechanism.

Methods
θ1= 45°, θ2= 60° θ1= 45°, θ2= 30° θ1= 60°, θ2= 60°

Ctran Crota Ctran Crota Ctran Crota

FEM 3.57× 10−6 3.13× 10−3 1.04× 10−6 1.31× 10−3 3.58× 10−6 3.07× 10−3

Case 1 3.75× 10−6 3.46× 10−3 1.10× 10−6 1.41× 10−3 3.64× 10−6 3.40× 10−3

Difference to FEM 5.0% 10.5% 5.7% 7.6% 1.7% 10.7%
Case 2 3.71× 10−6 3.43× 10−3 1.08× 10−6 1.39× 10−3 3.57× 10−6 3.33× 10−3

Difference to FEM 3.9% 9.6% 3.8% 6.1% −0.3% 8.5%
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output translational compliance of 2RR mechanism. Hence the
matrix method is only valid for calculating the output rotational
compliance C2RR,33, but invalid for the translational compliance
C2RR,11 when L/θ is small.

(2) Fig. 3(f) shows a specific spatial configuration of 2RR mechanism
where θ=0, which is a singular configuration. But since the ex-
tended lines of two limbs are collinear, this spatial configuration
has two DOFs including a rotational DOF (DM) and a translational
DOF (Dy). The rotational compliance of RCFH is dominant in the
output compliances C2RR,22 and C2RR,33 of 2RR mechanism. More-
over, the radial translational compliance of RCFH is dominant in
the output compliance of C2RR,11 of 2RR mechanism. Hence as
shown in Fig. 7, when θ=0°, the relative variations of output
compliance induced by the variation of Δx/Fx or Δα/Mz are always
small. It indicates that the matrix method is suitable in the output
compliance modeling of 2RR compliant mechanism when θ=0. As
to be noted, many researchers have successfully used CMM to
model various 2RR mechanisms with θ=0 [10,13,14].

3.3. Bridge-type compliant mechanism

The spatial configuration of bridge-type mechanism is illustrated in
Fig. 8. It consists of eight RCFHs. Based on CMM, the output compliance
matrix Cbridge of bridge-type mechanism can be derived as:

=
C C

C
C C

C
0

0 0
0

bridge

bridge,11 bridge,13

bridge,22

bridge,31 bridge,33 (8)

where Cbridge,ij denotes the ith row and jth column element of the
compliance matrix of bridge-type mechanism respectively. Detailed
derivation of Eq. (8) is illustrated in Appendix C.3.
Fig. 9 shows the surface plots of the output compliance variation of

bridge-type mechanism induced by the variation of Δx/Fx and Δα/Mz
for different L and θ. The relative variations of output compliance of
bridge-type mechanism are always bounded by 5% regardless the spa-
tial configuration of the system. This is consistent with the predicted

Fig. 6. Schematic and geometric configuration
of 2RR compliant mechanism.

Fig. 7. Effects of compliance variation of RCFH on the output compliance variation of 2RR compliant mechanism.
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results of DOF analysis. As shown in Fig. 3(g), the output platform of
bridge-type mechanism has complete three DOFs even when θ= 0 or
π/2. The rotational compliance of RCFH is dominant in all the output
compliances of bridge-type mechanism. Hence the matrix method is
always valid for the output compliance modeling of bridge-type me-
chanism.

4. Conclusions

This study focuses on the validity evaluation of compliance-based
matrix method (CMM) in the output compliance modeling of flexure-
hinge mechanism. Planar 3RRR, 2RR and bridge-type mechanisms

composed of right circular flexure-hinges (RCFHs) are selected for case
studies. Based on the analyses above, the following conclusions can be
drawn:

(1) The compliance matrix of RCFH expressed in its local frame is
usually ill-conditioned due to the domination of rotational com-
pliance factor. Inverse operation of the compliance matrix may
result in numerical instability when calculating the stiffness matrix
of RCFH.

(2) The validity of CMM is highly related to the mechanism type (serial or
parallel), spatial configuration and singularity of the structure. For se-
rial compliant mechanism, the calculation of output compliance does

Fig. 8. Geometries of bridge-type compliant mechanism.

Fig. 9. Effects of compliance variation of RCFH on the output compliance variation of bridge-type mechanism.
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not involve matrix inversion. The CMM can be effectively applied in
calculating its output compliance with acceptable accuracy due to the
linear superposition of RCFH compliances.

(3) For parallel compliant mechanism, the CMM is not always suitable
for output compliance modeling due to the inevitable matrix in-
version. A general criterion for the CMM validity is proposed as
follows: if the radial translational compliance or the rotational
compliance of RCFH is dominant in the output compliance of par-
allel mechanism, the matrix method is valid. By assuming that the
RCFHs only have the rotational DOF, the DOF analysis is applied to
help clarify the dominance of rotational compliance of RCFH under
different spatial configurations. The predicted results of this cri-
terion are consistent with the numerical evaluation on typical
parallel compliant mechanisms including 3RRR, 2RR and bridge-
type.

(4) The singularity of the spatial configuration does not always result in
the invalidity of CMM. Even under a singular configuration, the
CMM can still be valid if the translational or rotational compliance
of RCFH is dominant in the overall output compliances of the
parallel compliant mechanism.
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Appendix A. Compliance and stiffness equations of RCFH

The radial translational compliance of RCFH can be calculated by Ref. [20]:

= +
+

+x
F Eb

s
s

s1 2(2 1)
4 1

arctan( 4 1 )
2x (A.1)

where s= R/t. The tangential translational compliance of RCFH can be calculated by Ref. [20]:

= + + +

+ +

+ + + +
+ +

+ +
+

+
+

( )s

s

arctan( 4 1 )

arctan( 4 1 )

y
F Eb

s s s s s
s s

s s s s s
s

Gb
s
s

12 (24 24 22 8 1)
2(2 1)(4 1)

(2 1)(24 8 14 8 1)
2(4 1) 8

1 2(2 1)
4 1 2

y

4 3 2
2

4 3 2
5/2

(A.2)

The rotational compliance of RCFH can be calculated by Ref. [22]:

= +
M

Ebt t
R

t
R12

0.0089 1.3556
2

0.5227
2z

2 2 1

(A.3)

The stiffness factors of RCFH can be calculated by:

=

=

= =

=

K

K

K K

K

C

C R C
R

C R C
C

C C R C

11
1

22
1

23 32

33

11

22 2 33

22 2 33
22

22 33 2
33
2 (A.4)

Appendix B. General model of output compliance

As shown in Fig. 1, a local frame xiOiyi is attached to the RCFH. The compliance matrix CRCFH donates the relationship between loading
= F F MF [ , , ]x y

T and deformation = x y[ , , ]T .

= C FRCFH (B.1)

The serial compliant mechanism comprises several flexure hinges as shown in Fig. 1(a). The reference coordinate xOy is attached to the output
platform. The compliance CRCFH can be transformed to the frame xOy by

=C T C T( )i i i
0 0

RCFH
0 T (B.2)

where the transformation matrix Ti takes the following form:

= = =r r
r

rT T r T( , ) ( , ( , ) )
cos sin

sin cos
0 0 1

i x y

y

x
T

(B.3)

where α is the rotation angle of coordinate xiOiyiwith respect to xOy, = r rr ( , )x y
T is the position vector of point Oi expressed in the reference frame O.

The compliance matrix Cserial of serial mechanism is the summation of the compliances of individual RCFHs. It can be derived as:

=C Ciserial
0

(B.4)

The parallel compliant mechanism comprises several parallel limbs as shown in Fig. 1(b). The reference coordinate xOy of parallel compliant
mechanism is also attached to its output platform or the end effector. The compliance matrix C ilimb, of limb i can be calculated through the method
illustrated in Eq. (B.4). It can be transformed to the frame xOy:
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=C T C T( )i i i ilimb,
0 0

limb,
0 T (B.5)

The compliance matrix Cparallel of parallel mechanism is the summation of the stiffness matrices (inverse of compliance) of all the limbs. It can be
expressed as:

=C C( ( ) )iparallel limb,
0 1 1

(B.6)

Appendix C. Output compliance derivation of typical compliant mechanisms

C.1. Output compliance matrix of 3RRR mechanism

In Fig. 4, the position vectors of point Oi expressed in the reference frame O are

= L Lr ( cos( ), sin( ))1,3RRR 1 1
T (C.1)

= + + + + +R L R Lr r ((2 ) cos( ( )), (2 ) sin( ( )))2,3RRR 1 2 1 2 1
T (C.2)

= + + + + + + +R L L R L Lr r ((2 ) cos( ( )), (2 ) sin( ( )))2,3RRR 1 2 4 1 2 4 1
T (C.3)

= + + + + +L Lr r ( cos( ( )), sin( ( )))3,3RRR 2,3RRR 3 1 2 3 1 2
T (C.4)

The compliance matrices of hinge 1, hinge 2 and hinge 3 of 3RRR mechanism expressed in reference the frame O are

=C T r C T r( , ) ( , )1,3RRR
0

1 1 RCFH 1 1
T (C.5)

=C T r C T r( , ) ( , )2,3RRR
0

1 2 RCFH 1 2
T (C.6)

=C T r C T r( , ) ( , )3,3RRR
0

1 2 3 RCFH 1 2 3
T (C.7)

The compliance matrix of limb 1 of 3RRR mechanism can be derived as:

= + +C C C Climb,1,3RRR 1,3RRR
0

2,3RRR
0

3,3RRR
0 (C.8)

Due to the symmetry of 3RRR mechanism, the compliance matrices of limb 2 and limb 3 can be calculated as:

=C T C T2
3

, 0 2
3

, 0limb,2,3RRR
0

limb,1,3RRR
0

T

(C.9)

=C T C T2
3

, 0 2
3

, 0limb,3,3RRR
0

limb,1,3RRR
0

T

(C.10)

Then the output compliance matrix of 3RRR can be derived as:

= + +C C C C(( ) ( ) ( ) )3RRR limb,1,3RRR
0 1

limb,2,3RRR
0 1

limb,3,3RRR
0 1 1

(C.11)

C.2. Output compliance matrix of 2RR mechanism

In, the position vectors of point Oi expressed in the reference frame O are

= + + + +L R L R t Lr (0.5 2 cos , 0.5 sin )1,2RR
T (C.12)

= +L R tr (0.5 , 0.5 )2,2RR
T (C.13)

The compliance matrices of hinge 1, hinge 2 of 2RR mechanism expressed in the reference frame O are

=C T r C T r(0, ) (0, )1,2RR
0

1,2RR RCFH 1,2RR
T (C.14)

=C T r C T r(0, ) (0, )2,2RR
0

2,2RR RCFH 2,2RR
T (C.15)

The compliance matrix of left limb of 2RR mechanism can be derived as:

= +C C Climb,left,2RR
0

1,2RR
0

2,2RR
0 (C.16)

Due to the symmetry of 2RR mechanism, the compliance of right limb can be calculated as:

=C T C Ty ylimb,right,2RR
0

limb,left,2RR
0 T (C.17)

where Ty is the transformation matrix, it can be expressed as

=T
1 0 0

0 1 0
0 0 1

y
(C.18)

Then the output compliance matrix of 2RR mechanism can be derived as:

= +C C C(( ) ( ) )Bridge,2RR
0

limb,left,2RR
0 1

limb,right,2RR
0 1 1

(C.19)
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C.3. Output compliance matrix of bridge-type mechanism

In Fig. 8, the position vectors of point Oi expressed in the reference frame O of bridge type amplifier are:

= + + + +L R R t L Lr (0.5 2 , 0.5 2 sin )1,bridge
T (C.20)

= + + + + +L R L R t L Lr (0.5 4 cos , 0.5 sin )2,bridge
T (C.21)

= + + + +L R L R t Lr (0.5 2 cos , 0.5 sin )3,bridge
T (C.22)

= +L R tr (0.5 , 0.5 )4,bridge
T (C.23)

The compliance matrices of hinge 1, hinge 2, hinge 3 and hinge 4 of bridge-type mechanism expressed in the reference frame O are

=C T r C T r( , ) ( , )1,bridge
0

1 RCFH 1
T (C.24)

=C T r C T r( , ) ( , )2,bridge
0

2,bridge RCFH 2,bridge
T (C.25)

=C T r C T r(0, ) (0, )3,bridge
0

3,bridge RCFH 3,bridge
T (C.26)

=C T r C T r(0, ) (0, )4,bridge
0

4,bridge RCFH 4,bridge
T (C.27)

The compliance matrix of left limb of bridge-type mechanism can be derived as:

= + + +C C C C Climb,left,bridge
0

1,bridge
0

2,bridge
0

3,bridge
0

4,bridge
0 (C.28)

Due to the symmetry of bridge-type mechanism, the compliance matrix of right limb can be calculated as:

=C T C Ty ylimb,right,bridge
0

limb,left,bridge
0 T (C.29)

Then the output compliance matrix of bridge-type mechanism can be derived as:

= +C C C(( ) ( ) )Bridge limb,left,bridge
0 1

limb,right,bridge
0 1 1

(C.30)

Appendix D. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.precisioneng.2019.02.006.
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