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We propose a novel approach of wet electrospinning to yield fiber-reinforced polymer ceramic compos-
ites, where a reactive ceramic precursor gel is used as a collector. We illustrate our approach by gener-
ating polyethylene oxide (PEO) fibers in a potassium silicate gel; the gel is later activated using
metakaolin to yield a ceramic-0.5 wt% PEO fiber composite. An increase of 29% and 22% is recorded for
the fabricated polymer ceramic composites in terms of indentation modulus and indentation hardness
respectively. Our initial findings demonstrate the process viability and might lead to a potentially scal-
able manufacturing approach for fiber-reinforced polymer ceramic composites.

© 2021 Society of Manufacturing Engineers (SME). Published by Elsevier Ltd. All rights reserved.

1. Introduction

Electrospinning is a versatile and efficient approach for generat-
ing micro-and nanofibers with an extremely high aspect ratio and
surface area. The intrinsic wavy and spiral characteristics of elec-
trospun fibers provide desirable attributes for toughening ceramic
matrices. In traditional electrospinning, the fibers are usually col-
lected as a non-woven mat using solid collectors. Instead, the
adoption of a liquid bath collector has been exploited to either
expedite the coagulation of fibers [1] or obtain fibers with specific
structures [2]. Using electrospun fibers as nanoadditives has been
explored primarily in polymer-based composites [3] through
film-stacking [4] or solution impregnation [5]. Short electrospun
fiber reinforcement has been attempted through mechanical cut-
ting [6] or ultrasonication [7] of electrospun nonwovens. However,
these methods have not given full scope to the advantages of elec-
trospun fibers. The compact nature of the non-woven mat obtained
from traditional electrospinning substantially diminishes the flex-
ibility of electrospun fibers, and the fibers cannot be dispersed
inside the matrix. Meanwhile, the short electrospun fiber genera-
tion raises strict requirements in experiment devices and protocols
and sometimes yields limited dispersibility [7].
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The aforementioned obstacles in dispersing continuous electro-
spun nanofibers in composites can be alleviated using the wet elec-
trospinning technique. Wet electrospinning, which adopts a liquid
bath collector instead of a solid metal collector, provides a reliable
approach for fabricating 3D porous fiber structures. Taskin et al. [8]
has produced 3D microfibrous scaffolds using a grounded ethanol
collector and demonstrated the advantages of the loosely packed
fibrous structures in mimicking extracellular matrix compared to
conventional 2D electrospun nonwovens. Sonseca et al. [9] has
investigated the surface morphology of 3D scaffolds fabricated
using wet electrospinning and 2D scaffolds using conventional
electrospinning. The 3D scaffolds exhibited a 12% increase in open
porosity, with each individual fiber possessing nanoporosity which
facilitates cell infiltration. Chen et al. [ 10] has also demonstrated an
increase of surface area to 6.45 m?/g of the 3D scaffold created by
wet electrospinning. Despite its wide application in tissue engi-
neering [11], wet electrospinning has not been explored in com-
posite manufacturing, especially ceramic composites. The
combination of electrospinning polymer nanofibers and a ceramic
matrix can lead to great potential and versatility in creating
organic/inorganic composites mimicking cortical bones [12].

In this letter, we propose a novel wet electrospinning approach,
where a reactive ceramic precursor gel is used as the collector. The
gel is later activated using metakaolin to yield fiber-reinforced
polymer ceramic composites. The process will facilitate the ran-
dom and uniform dispersion of electrospun nanofibers directly
inside the matrix. The adoption of a liquid gel as the collector dur-
ing electrospinning enables the direct infusion of nanofibers in an
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inorganic ceramic matrix at the same time when they are gener-
ated, which significantly reduces the time and effort required in
conventional composite manufacturing methods.

2. Methods
2.1. Wet electrospinning of PEO fibers

Poly(ethylene oxide) (PEO) was chosen as the material of elec-
trospun nanofibers due to its low toxicity and easy handleability.
The 5 wt% PEO solution used for electrospinning was prepared by
dissolving PEO powder (with a molecular weight of
600,000 g/mol) in deionized water and stirring at 30 ‘C using a
magnetic stirrer for 12 h until full dissolution. The reactive ceramic
precursor gel was a potassium silicate solution that was chosen for
its versatility. The ceramic precursor was created by mixing fumed
silica with potassium hydroxide pellets dissolved in deionized
water using a magnetic stirrer. The mixture was allowed to sit on
an orbital shaker for 24 h to ensure a homogeneous solution.

The schematic of the experimental setup is shown in Fig. 1. PEO
solution was loaded in a 6 ml syringe with a stainless-steel needle
of gauge 21 (inner diameter of 584 pum) and fed using a syringe
pump (NE-300, New Era Pump Systems, USA). Positive DC high
voltage (ranging from 0 to 11 kV) was generated by a high voltage
amplifier (Trek 10/10B-HS, Advanced Energy, USA) and applied to
the needle. The ceramic precursor was contained by a petri dish
and served as the liquid gel collector for electrospun fibers. A small
copper foil connected to the ground was inserted into the liquid gel
and placed on the bottom of the petri dish. The ceramic precursor
was stirred at 600 rpm with a magnetic stirrer to facilitate the fiber
dispersion inside the liquid gel during collection. In order to avoid
any disturbance of the electric field by other possible grounds, a
plastic sheet was wrapped around the petri dish to isolate the elec-
trospinning environment.

2.2. Electrospun PEO fiber-ceramic composite synthesis

30 g of electrospun PEO fiber-reinforced polymer ceramic was
synthesized containing 0.5 wt% of PEO fibers. The electrospinning
process took 3 h to infuse 0.15 g of PEO fibers (3 g of 5 wt% PEO
solution) into 19.68 g of ceramic precursor gel. After obtaining
the ceramic precursor gel with uniformly dispersed nanofibers,
the mixture was combined with 10.17 g of metakaolin, an activa-
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Fig. 1. The experimental setup for wet electrospinning into a reactive ceramic
precursor gel.
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tor, using a planetary centrifugal mixer (ARE-310, THINKY, USA)
at 1200 rpm for 10 min and degassed at 1400 rpm for 5 min to
form the fresh polymer-ceramic composite, potassium geopolymer
slurry reinforced with PEO fibers. The slurry was then cured at
50 °C for 24 h on an orbital shaker running at 160 rpm to allow
the further escape of macroscopic air bubbles.

3. Results and discussion
3.1. Dispersion of electrospun PEO fibers in liquid gel

In principle, with the assistance of a magnetic stirrer, the elec-
trospun fibers will disperse uniformly inside the liquid gel. How-
ever, the results suggest that PEO fibers tend to form
agglomerations inside the ceramic precursor gel, as shown in
Fig. 2(a). Therefore, a further dispersion strategy was employed
to achieve a more uniform dispersion of the fibers. The clusters
were first untangled using an overhead stirrer (RW 20 digital,
IKA, Germany) for 30 min at 1000 rpm. The mixture was then stir-
red overnight at 800 rpm using a magnetic stirrer to further break
down the agglomerations. The dispersion result is shown in Fig. 2
(b), where the nanofibers were dispersed to a great extent except
for some small clusters bound together by the unevaporated
solvent.

3.2. Microstructure of hardened electrospun fiber-reinforced polymer-
ceramic composites

Fig. 3(a) displays the microstructure of the resulting ceramic-
0.5 wt% eletrospun PEO fibers composite. A random distribution
of the electrospun fibers is observed. The average fiber diameter
is 5.66 + 2.84 um given by digital image analysis. The details are
given in the Supplementary Material. Fig. 3(b) shows the existence
of individual PEO fibers inside the matrix. The interface between
the fiber and the matrix is blended, suggesting good bonding
between PEO fibers and the matrix and the enhanced geopolymer-
ization at the interface [13,14]. This can be attributed to the surface
nanoporosity exhibited in wet-electrospun fibers which facilitates
the reaction and impregnation of the ceramic matrix [9]. Fig. 3 (c,
d) displays a crack-bridging effect introduced by electrospun
fibers, which has also been reported for geopolymer nanocompos-
ites reinforced with carbon nanofibers [13] and serves as a major
toughening mechanism for fiber-reinforced composites.

3.3. Mechanical properties of hardened electrospun fiber-reinforced
polymer-ceramic composites

Fig. 4 displays the measured mechanical characteristics of the
hardened ceramic-0.5 wt% electrospun PEO fiber composite as
measured by microindentation, in comparison with the mechani-
cal properties of a pure ceramic matrix. The detailed experimental
procedure is given in the Supplementary Material. The maximum
penetration depth is 7.03 pum, indicating that the indentation test
is probing a local volume of a characteristic radius of 21 pm [16].
The distributions of both the indentation modulus and hardness
exhibit a bell-shaped curve with a broad peak. The average value
of the indentation modulus is M = 10.72 £ 0.68GPa, whereas the
average value of  the indentation hardness is
H =524.13 + 49.67GPa. Thus, the variability in the indentation
modulus is 6.3% and the variability in the indentation hardness is
9.5%. The high variability of the mechanical properties points to
the heterogeneity of the microstructure introduced by electrospun
fiber reinforcement. Therefore, in future studies, we will investi-
gate ways to better control the microstructure using wet
electrospinning.
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Fig. 3. (a) Microstructure of hardened ceramic-0.5 wt% eletrospun PEO fibers; (b) individual PEO fiber inside the ceramic matrix; and (c, d) fracture micromechanisms of

hardened nanocomposites.

Compared to a pure ceramic matrix fabricated according to the
same protocol but without electrospun fibers, see Fig. 4(a)-(b), the
ceramic-0.5 wt% electrospun PEO fiber composite exhibits a 29%
increase in indentation modulus and a 22% increase in indentation
hardness. The enhancement in mechanical properties can be
explained by the fact that electrospun fibers serve as both a cata-
lyst and a reinforcing phase in the composite. During the curing
of the composite, the PEO fiber is a catalyst for the geopolymeriza-
tion reaction due to its high surface area [10,15]. When the com-
posite is hardened, the PEO fibers give rise to crack-bridging
effects that strengthen the material. The increase in elasto-plastic
characteristics shows that the process of using a precursor gel as
a collector during the electrospinning process is efficient to yield
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4. Conclusions

We investigated a novel approach of wet electrospinning to
yield performance-enhanced polymer-ceramic composites by elec-
trospinning polymer fibers directly to a reactive ceramic precursor
gel. Our initial results supported its feasibility by successfully fab-
ricating fiber-reinforced ceramics by curing the ceramic precursor
and fiber mixture with an activator agent after the wet electrospin-
ning. An important concern was to homogeneously disperse the
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Fig. 4. Mechanical properties of ceramic-0.5 wt% eletrospun PEO fiber composite compared to the pure unreinforced ceramic. (a)-(b) Pure unreinforced ceramic [11]; (c)-(d)
ceramic-PEO fiber composite. M is the indentation modulus, whereas H is the indentation hardness.

fibers and eliminate fiber clusters. The resulting hardened fiber-
reinforced polymer-ceramic composite showed a random distribu-
tion of the PEO fibers with individual fiber well combined with the
matrix. Mechanical characterization using microindentation tests
revealed that 0.5 wt% electrospun PEO fibers were sufficient to
yield a substantial increase of 29% and 22% in the indentation mod-
ulus and indentation hardness, respectively. This enhancement can
be attributed to the fact that PEO fibers catalyze the ceramic pre-
cursor gel reaction due to their high surface area, as well as
toughen the ceramic matrix through crack-bridging mechanisms.
These initial findings demonstrate the process viability and might
lead to a potentially scalable manufacturing approach for fiber-
reinforced polymer ceramic composites.
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