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Confidence-Aware Photometric Stereo Networks
Enabling End-to-End Normal and Depth

Estimation for Smart Metrology
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Abstract—The acquisition of geometric 3-D information
is crucial for ensuring quality standards and monitoring
procedures in various manufacturing applications. Photo-
metric stereo is an established technique in computer vi-
sion to recover 3-D surfaces of objects. However, existing
photometric stereo methods mainly focus on normal esti-
mation of objects, without considering the depth estima-
tion. On the other hand, current methods tend to prioritize
accuracy while overlooking the confidence of predictions,
which holds valuable information within the industry. In
this article, we propose a deep learning-based photomet-
ric stereo system, consisting of hardware implementation,
dataset generation, and algorithm design, to reconstruct
3-D information of physical objects, represented by normal
and depth maps. In terms of the proposed algorithm, a
coarse-to-fine network is introduced to improve the perfor-
mance by exploiting the relationship between initial normal
and depth predictions. Furthermore, the pixel-wise confi-
dence associated with predictions is also estimated with-
out requiring the ground truth, making a contribution to
enhancing both performance and practicality. The experi-
mental results on our synthetic dataset and real samples
demonstrate the effectiveness of the proposed method on
both normal/depth and confidence estimation.

Index Terms—Deep learning, normal and depth estima-
tion, photometric stereo, pixel-wise confidence.

I. INTRODUCTION

MODERN manufacturing has been significantly enhanced
by the advancement in in situ smart metrology tech-

niques. Smart metrology plays an important role in real-time
monitoring for process optimization and quality control during
manufacturing processes [1], [2]. Compared to traditional di-
mensional metrology, 3-D measurement techniques have drawn
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more attention recently, as they provide intricate structural infor-
mation of physical objects in 3-D space. These advanced mea-
surement techniques will benefit the development of many fields,
such as reverse engineering [3], additive manufacturing [4], and
robotics [5].

Current 3-D measurement methods can be generally catego-
rized into two types: scanning-based and image-based metrol-
ogy. Scanning-based metrology involves the use of a scanning
device to capture the geometry of a physical object and con-
vert it into a digital 3-D model. The commonly used methods
include laser scanning [6], coordinate measuring machine [7]
and computed tomography [8]. Although the scanning-based
methods provide high levels of accuracy in relevant applica-
tions, they come with some drawbacks, such as high costs
and time-consuming measurements. In addition, laser scanning
techniques are sensitive to reflective surfaces, leading to inac-
curate measurements. The acquired data typically consist of
point clouds or discrete measurements, necessitating further
postprocessing, and analysis to obtain the desired outcome.

Due to the development of deep learning techniques, image-
based 3-D measurement has drawn more interest. Image-based
measurement utilizes the snapshots captured by single or mul-
ticameras to perform metrology, making it convenient for real-
world applications. Monocular depth estimation has made sig-
nificant progress [9], [10], which takes a single image as the
input to predict depth information of the whole scene at the
pixel level. Different from the 2.5-D representations provided by
the depth estimation, neural radiance fields (NeRF)-based meth-
ods [11] offered a 3-D surface of scenes from multiview images
and synthesized them in novel views. Based on image-based
rendering, NeRF-based methods were optimized by minimizing
the disparity between the rendered images using estimated 3-D
scenes and real images. However, these methods are tailored to
specific scenes and demand extensive data acquired from cam-
eras positioned at various locations, a condition often impractical
in manufacturing settings.

Another kind of image-based metrology includes deflectom-
etry [12], structured light reconstruction [13], and photometric
stereo [14]. These methods reconstruct the surface of a physical
object by receiving information from the light reflection of the
object, such as projected fringe patterns and reflections from
different illumination conditions. Compared to structured light
reconstruction and deflectometry, photometric stereo captures
finer details and is more flexible to get accurate reconstruction
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for complex surfaces. Besides, unlike NeRF, photometric stereo
methods are not shape-specific and generalize well to different
shapes. Therefore, in this work, we focus on photometric stereo
methods to recover surfaces of objects.

Existing photometric stereo methods mainly focus on sur-
face normal reconstruction rather than depth estimation. To
get depths, traditional surface normal integration methods are
usually used. However, surface normal integration is an ill-
posed problem and is often limited to continuous surface fea-
tures [15]. Depth information is arguably more important in
manufacturing-related applications [16], [17]. It motivates this
work to incorporate depth information into the reconstruction
process to enhance photometric stereo with a more complete
and accurate 3-D representation of the target object. Recently,
Yang et al. [18] proposed a deep learning-based photometric
stereo method for normal and height estimation under point-light
conditions, but the interrelationship between the surface normal
and height information has not been fully exploited. Different
from current work [9], [10], [18], we propose to implicitly
exploit the physical relationship between surface normal and
depth to improve further the accuracy.

On the other hand, normal and depth estimation involve dense
predictions, aiming to provide detailed predictions of normals
and depths at each pixel in images. Nevertheless, ensuring pre-
cise measurements for every pixel poses a significant challenge.
In such scenarios, the associated confidence in the measurements
becomes crucial, as it helps identify accurate/inaccurate predic-
tions from estimated normals and depths. Unfortunately, existing
learning-based methods tend to prioritize accuracy while over-
looking the confidence of the predictions, leading to a gap in
their practical utility [19].

To address the abovementioned issues, we propose a
confidence-aware photometric stereo network to estimate the
normal and depth maps of 3-D objects as well as to provide
the corresponding pixel-wise confidence levels for the predic-
tion. The proposed networks adopt a coarse-to-fine refinement
approach to exploit the relationship between surface normals
and depths, aiming to further improve the prediction accuracy.
Specifically, the initial normal and depth maps are predicted us-
ing UNet architectures [20] with residual connections. Then, the
initial normals and depths are fed into the proposed refinement
module along with the raw image inputs to leverage the initial
guess estimates and their physical relationships.

Furthermore, the confidence maps are predicted without
knowing the ground truth. The confidence serves two crucial
purposes: i) it provides an indication of the reliability of the
predictions, enabling informed decision-making and risk assess-
ment in subsequent industry processes and ii) it further improves
prediction accuracy, by implicitly prioritizing the regions of
the objects involving more reflection information under lights,
while de-emphasizing invalid regions where there is minimal
or no change in light intensity during the network training. The
predicted confidence acts as a metric to assess the reliability of
the output generated by the proposed method.

To train and validate the proposed method, a synthetic dataset
was customarily generated based on physics-guided informa-
tion. Images were rendered from a single camera view un-
der different lighting conditions, consistent with our proposed

setup. The dataset consists of 10 objects from the Blobby shape
dataset [21], as well as 15 objects with various shapes sourced
from the Internet. The performance of our network is further
validated and demonstrated through physical experiments.

This article presents a deep learning-based photometric stereo
system including hardware and algorithm, aiming to provide a
comprehensive solution that bridges the gap between theoretical
research and practical applications for 3-D measurement in man-
ufacturing area. The overall contributions can be summarized as
follows.

1) An end-to-end deep learning approach is proposed to es-
timate both the surface normal and depth maps following
the photometric stereo principles.

2) Instead of separating normal and depth estimation tasks, a
coarse-to-fine network is designed to improve prediction
accuracy by implicitly leveraging the physical relation-
ships between normal and depth maps.

3) A confidence map framework is designed in the network
design by a unified loss function. The confidence map
can provide new insights into the prediction uncertainties
(which separates this work from most in the field), but
also enhance the prediction accuracy by minimizing the
uncertainties in the loss function. The predicted confi-
dence offers crucial insights and serves as an indicator of
the measurement reliability.

4) The proposed method was extensively evaluated on our
synthetic dataset and physical experiments. Experimen-
tal results show that our method achieves superior per-
formance in both normal and depth estimation, while
the confidence map correlates well with the prediction
accuracy.

II. RELATED WORK

In this section, we present an overview of recent advance-
ments in the fields of photometric stereo, depth estimation,
and confidence prediction. Methods for 3-D surface recon-
struction are typically classified into single-view and multiview
approaches. In this context, our emphasis is placed on the
single-view method.

A. Learning-Based Photometric Stereo

Traditional photometric stereo, first proposed by Wood-
ham [22], aims to recover the surface normal of objects based
on the change of light intensities. The assumption is that the
target has Lambertian surfaces, i.e., the observed intensities of
the surface are the same under various viewing angles. However,
there are few objects with Lambertian surfaces in real-world
applications. To bridge the gap, deep learning techniques have
been developed to handle specular reflection in photometric
stereo. DPSN [14] is a pioneer photometric stereo method by
using deep neural networks to deal with the non-Lambertian
surface problem. To solve the disorganized and random number
of inputs, Ikehata [23] introduced observation maps as the
intermediate representations between each pixel of the inputs
and the corresponding surface normal. Instead, Chen et al. [24]
proposed to utilize the max-pooling operation to concatenate
the features extracted from each image based on the same

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Northwestern University. Downloaded on November 02,2024 at 20:58:43 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: CONFIDENCE-AWARE PHOTOMETRIC STEREO NETWORKS ENABLING END-TO-END NORMAL AND DEPTH ESTIMATION 3

encoder. In this approach, the sequence and number of inputs
do not need to be predefined. Logothetis et al. [25] introduced
a pixel-wise training manner based on the observation map to
prepare samples, aiming to extend the variation but keep the
same computational cost for data generation.

Although the aforementioned methods have achieved promis-
ing results on normal estimation, the depth prediction, which
provides useful structural information for shape analysis, is often
neglected. Different from normal estimation, depth estimation is
sensitive to the textureless objects and may suffer from the noise
under various lights in photometric stereo scenario. To this end,
our work tries to leverage normals to enhance depth estimation
via an implicit manner.

B. Depth Estimation

In real-world applications, the depth of objects holds signifi-
cant importance alongside surface normals. Deep learning-based
methods have achieved significant progress in monocular depth
estimation [10], [26]. Similar to photometric stereo methods,
monocular depth estimation involves a single camera to predict
depths. These methods extract both low-level features such
as edges, texture, and intensities, as well as high-level fea-
tures including shapes, sizes, and positions, to infer the depth
information.

Current photometric stereo methods [27], [28] attempted to
predict the depth map in a data-driven manner by enforcing the
consistency of predicted normals and depths. However, these
approaches involve extra computational costs and may suffer
from misaligned correspondence due to the limited resolution.
Li et al. [29] proposed to reconstruct the new image based on de-
coupled surface normal, depth, and other rendering information
from input images. Through the minimization of the difference
between reconstructed images and input images, the predicted
surface normal and depth maps were optimized. However, the
above methods rely on the accuracy of estimated normal maps
for the depth estimation.

In this work, we propose an end-to-end approach to predict
the surface normal and depth of objects directly from raw input
images. Furthermore, a coarse-to-fine refinement strategy is
introduced to improve the performance by leveraging the initial
estimates and implicitly exploiting the physical relationship
between the surface normal and depth maps.

C. Confidence Prediction

In real-world applications, it is essential to consider not only
the accuracy of the reconstructed surface but also the confi-
dence level associated with the predictions. The confidence level
provides valuable information on measurement uncertainty and
guidance to further manufacturing steps. However, there are few
works that take the confidence of predictions into considera-
tion specifically in the context of photometric stereo. Recently,
Kaya et al. [30] leveraged the Bayesian neural network to provide
the confidence for multiview photometric stereo. However, the
confidence provided in [30] is binary and only concerns the
uncertainty of model parameters, not including measurement
uncertainties.

Fig. 1. Setup of photometric stereo in this study. A single camera and
96 LED lights are employed.

Instead, the use of confidence information is commonly ap-
plied in the fields of 2-D/3-D keypoint detection [31]. The
keypoints are represented by the heatmaps following a Gaussian
distribution, centered at the location of each keypoint. The
position in the predicted heatmaps with the largest values is
determined as the keypoint, where the values indicate the prob-
ability of the estimated keypoint. Inspired by keypoint detection,
we propose to predict the pixel-wise confidence levels of surface
normal and depth estimations in photometric stereo. Different
from the task of keypoint detection, there is no ground truth
available for supervising the estimation of confidence maps. In
the proposed method, we introduce a novel strategy to implicitly
guide the optimization of confidence estimation by combining
confidence levels and estimation errors in a single loss function.
The confidence prediction aims to enhance the performance
of predicted normals and depths, while also addressing the
challenge of lacking explicit supervision for confidence maps
during training.

In contrast to existing photometric stereo methods [18],
[27], [28] that neglect confidence information, we propose to
predict confidence associated with normal and depth predic-
tions and utilize predicted confidence to further improve the
accuracy.

III. METHOD

We propose a photometric stereo system based on deep learn-
ing technique to measure the 3-D shape of objects. This system
comprises of three components: photometric stereo setup imple-
mentation, physics-informed dataset generation, and deep learn-
ing algorithm design. For algorithm design, a confidence-aware
photometric stereo network is proposed to achieve i) end-to-end
reconstruction of accurate 3-D information of objects with the
representation of surface normal and depth and ii) confidence-
aware prediction with an explicit pixel-wise confidence estima-
tion of the predictions. The overall framework is illustrated in
Fig. 2. In Section III-A, we provide detailed explanations of the
photometric stereo setup employed in our method. To predict
the normal and depth maps of objects, our approach adopts a
coarse-to-fine strategy, which is elaborated in Sections III-B
and III-C, respectively. In order to enhance the performance
of reconstructed surfaces and incorporate the confidence level
of predictions, our method integrates confidence maps into a
unified framework, which is optimized during the same training
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Fig. 2. Overview of the proposed method. 96 images captured under different lighting conditions are taken as the input to an encoder. Two
decoders are used to predict the initial normal and depth maps, respectively. Then, the initial predictions combined with input images are fed into
an autoencoder to refine normal and depth predictions. The confidence levels associated with predictions are also predicted. The feature exchange
is employed in the initial stage and removed in the refined stage. The masks are used in the framework.

process with the surface normal and depth maps, as discussed
in Section III-D.

A. Photometric Stereo Setup

Our photometric stereo setup is illustrated in Fig. 1. A comple-
mentary metal oxide semiconductor camera, with a focal length
of 160 mm and a sensor resolution of 2048×1088 px, is mounted
along the center of a dome shell. The diameter and focal lengths
of the dome shell are 609.6 mm and 152.4 mm. A total of 96
light-emitting diodes (LEDs) are installed on the dome shell at
five height levels. Particularly, an Arduino is utilized to send
sequential signals to the shift registers embedded on the printed
circuit board, which in turn control the lighting of each individual
LED. This setup allows us to programmatically manage the
illumination sequence of all 96 LEDs, ensuring they light up one
at a time in a predefined order. This sequential process allows us
to acquire a comprehensive set of images with diverse lighting
variations, enabling a thorough analysis of the object’s surface
properties. Please note that we did not design a specific order
to turn ON each LED light. During the comparison with current
methods, all methods utilized the same data under identical LED
lighting conditions for training and evaluation purposes.

To prepare the dataset, we began by calibrating both the cam-
era and the LED positions following the calibration procedures
detailed in DPPS [18]. This calibration process ensures accurate
alignment and positioning. Subsequently, a synthetic dataset
was generated based on the calibrated information. For further
details on the dataset generation, please refer to Section IV-A.
The same calibrated setup was also used to perform physical
measurements as detailed in Section IV-F.

B. Initial Normal and Depth Estimation

We adopt a UNet architecture [20] followed by two decoder
branches to predict normal and depth maps, respectively. Resid-
ual connections are employed in the Unets to preserve the

details in the inputs and latent features. Particularly, the fea-
tures obtained from the normal estimation branch, responsible
for normal map estimation, are concatenated with the features
from the depth estimation branch, which handles depth map
estimation. This concatenated representation is used to predict
the initial depth map. The motivation behind this design is from
the observation that depth estimation is often more challenging
in photometric stereo. The reason is that normal estimation is
more directly and accurately captured through changes in pixel
intensity across images. By incorporating features from normal
estimation, the depth estimation branch utilizes additional infor-
mation to improve the accuracy of the initial depth estimation.
The normals serve as an intermediate supervision for depth
estimation, allowing for better guidance and optimization during
training.

In contrast to previous approaches [14], [32], we design the
input representation by concatenating the captured 96 images
into a single tensor with dimensions R96×H×W , rather than using
the standard format of R96×D×H×W . Here, H and W represent
the height and width of the images, respectively, whileD denotes
the color channels (typically set to 1 for grayscale or 3 for RGB
images). This offers the advantage of reducing computational
costs while maintaining performance.

To train this module, we use the reverse Huber (berHu)
loss [33] to minimize the difference between coarse predictions
and ground truth normal/depth maps. The berHu loss is defined
as follows:

L(x,x∗) =

{∑N
i=1 |xi − x∗

i |, |xi − x∗
i | ≤ t∑N

i=1
(xi−x∗

i)
2+t2

2t , |xi − x∗
i | > t

(1)

where N indicates the total number of samples and t is the
threshold and a hyperparameter. By using the berHu loss, the
model can effectively handle outliers and encourage a more ro-
bust estimation of the normal and depth maps. This loss function
assigns linear loss for smaller errors to ensure smoothness, while

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Northwestern University. Downloaded on November 02,2024 at 20:58:43 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: CONFIDENCE-AWARE PHOTOMETRIC STEREO NETWORKS ENABLING END-TO-END NORMAL AND DEPTH ESTIMATION 5

using quadratic loss for larger errors to penalize the outliers,
leading to faster convergence. The loss function is defined as
follows:

Linit = λnL(ninit,n
∗) + λdL(dinit,d

∗) (2)

where ninit and dinit indicate the initial predicted normal and
depth maps. λ is the weight to make a trade-OFF between
different loss items.

C. Normal and Depth Refinement

We are motivated by the observation that estimated normal
maps excel at capturing fine details in local regions, while
predicted depth maps tend to be more accurate in global re-
gions [9], [15]. We propose a mutual refinement approach to
benefit from the strengths of each network. Specifically, we
combine the initial normal and depth estimation with the 96
raw input images and feed them as the inputs to another UNet
architecture. This refinement process focuses on improving the
normal map estimation in global regions. Similarly, we employ
a separate UNet that takes the initial depths, initial normals,
and raw 96 input images as inputs to enhance the accuracy of
the depth estimation in local regions. By utilizing this mutual
refinement strategy, we can effectively leverage the complemen-
tary information between the two estimates, leading to improved
overall performance.

In the refined module, we employ two separate UNets with
residual connections to predict final normal and depth maps.
Unlike the design of the coarse module, there is no informa-
tion exchange between these two UNets because they learn
distinct mappings to obtain the final predictions. As we know,
the normal map can be approximately derived from the depth
map by calculating the gradient. Hence, the refined normal
estimation branch focuses on learning the mapping from the
depth to the normal, i.e., derivative relationship. In the re-
fined depth estimation branch, the mapping from the normal to
the depth, i.e., integration relationship, is learned. Given that the
two branches learn different mappings, we design two separate
UNets without feature sharing. This design allows each UNet
to capture the specific characteristics and dependencies required
for the corresponding task, leading to more accurate predictions.

To train the refined module, the berHu loss between final
predictions and ground truths are minimized. The loss function
is

Lrefine = λnL(n,n
∗) + λdL(d,d

∗) (3)

where n and d denote the refined normal and depth predictions.

D. Confidence-Aware Estimation

The proposed method predicts both the surface normal and
depth maps and the corresponding pixel-wise confidence map
c ∈ RH×W for the predictions, where H and W are the height
and width of predicted normal and depth maps. The confidence
maps contain values ranging from 0 to 1, indicating the confi-
dence level of the predicted normal/depth maps. It provides an
estimation of how much we can trust the predictions at each
pixel. It is worth noting that our confidence map prediction is

given without requiring knowledge of the ground truth, making it
useful for practical implementation in manufacturing metrology
applications.

The confidence maps are intended to reflect the reliability
of the predictions, with lower confidence values assigned to
erroneous regions and higher values assigned to accurate ones.
There are two situations in which the confidence values tend to
be lower: i) Dark regions of objects regardless of illumination
conditions in the input images. In the absence of changes in
light intensity, the photometric stereo method may struggle to
accurately estimate the surface normal. Although deep learning-
based methods have a strong ability to learn the mapping
relationship between inputs and targets, predictions in these
dark regions may still be less accurate unless the test samples
have similar shapes to the training samples. ii) The regions
where the designed model fails to handle due to its inherent
limitations, such as boundary edges and extremely steep slopes.
These errors arise from the uncertainties associated with the
design of the model and are challenging to eliminate entirely.
To avoid the overfitting problem, the weights of prediction
errors in those regions should be optimally lowered to facilitate
convergence.

To this end, we propose to predict the confidence map implic-
itly by optimizing the difference between the scaled predicted
normal and depth maps and the ground truth. Let us denote
the loss function L(n,n∗) for the normal map and L(d,d∗)
for the depth map. The designed optimization function for the
confidence estimation is defined as follows:

min L(n� cn,n
∗ � cn), L(d� cd,d

∗ � cd)

max cn, cd (4)

where � indicates the Hadamard product; cn and cn denote the
corresponding confidence map for normals and depths.

In (4), we aim to minimize the error associated with the normal
L(n,n∗) and the depth L(d,d∗) with confidence-aware scale
factors cn and cd. To avoid the problem of trivial solutions
that the network will assign all zeros to the confidence map,
we introduce an additional objective function to maximize the
corresponding confidence maps cn and cd. By including the
loss term of confidence maps, we encourage the model to refine
the predicted confidence maps along with the normal and depth
maps. This enables the model to implicitly learn the relationship
between the predicted maps and their corresponding confidence
values, further enhancing the accuracy and reliability of the
predictions.

According to (3) and (4), the unified loss function in the
refinement stage is then given by

Lrefine = λnLn + λdLd

Ln = L(n,n∗) + L(n� cn,n
∗ � cn) + λcn(1 − cn)

Ld = L(d,d∗) + L(d� cd,d
∗ � cd) + λcd(1 − cd) (5)

where 1 represents a matrix of ones with the same spatial
dimension as cn and cd.

Here, the confidence predictions are implicitly optimized
by the difference between predicted and ground truth
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TABLE I
PARAMETER SETTINGS IN DATASET GENERATION

depths/normals in an end-to-end manner. These predictions are
provided without necessitating the availability of ground truth
data during the test.

IV. EXPERIMENTS

A. Dataset Generation

A synthetic dataset was generated by Blender using the cycles
render engine [34]. Blobby shape dataset [21], consisting of 10
objects, was used to render images. As the objects in Blobby
set [21] shared similar shapes, we selected 15 additional objects,
from the Internet (please refer to the Supplementary Material),
with more complex shapes to complement the objects from the
Blobby shape dataset. These additional objects exhibit diverse
and intricate geometries, providing a broader range of shapes for
image rendering and training purposes. The presence of these
diverse shapes ensures that the model is exposed to a wider
range of geometries and can effectively handle different surface
structures and variations.

A physical-based render, cycles, was applied to generate the
synthetic dataset. The built-in principled bidirectional scattering
distribution function was used to simulate real-world materials,
influenced by the base color, metallic value, specular value, and
roughness in this study. The details of parameter settings are
presented in Table I. As parts in manufacturing applications
are usually metallic, the metallic value is set to one and the
specular value ranges from 0.8 to 0.9. The values of roughness
are randomly chosen from 0.25 to 0.45, controlling surface
smoothness and reflection in materials and shaders. The scale
of objects is randomly set to 1.0 to 1.3, resulting in a variation
range up to 200 mm in the depth range. The maximum depth
value is 374 mm. The value of base color ranges from 0.6 to 0.8.
To avoid overfitting, we randomly added a variation ranging
from −5 to 5 mm to the calibrated positions of the camera and
light positions. It should be noted that as the depth variation of
objects (200 mm) is not much smaller than the distance from the
object to the camera (374 mm), so we adopted the perspective
projection instead of the commonly used orthographic projection
for rendering. In this way, the rendered images are more realistic
and suitable for depth estimation. We rotated each object with

Fig. 3. Examples of rendered images of one object with various rough-
ness (from low to high).

12 × 12 rotation angles. A total of 96 images were rendered for
each shape input as the illumination from each calibrated light
position was enabled. Therefore, the synthetic dataset consists
of 25 × 12× 12 = 3600 samples. Fig. 3 illustrates exemplary
rendered images from one illumination with various roughness.
The training set includes 13 objects (1872 samples), while the
remaining 12 objects (1728 samples) are used for evaluation.

B. Implementation Details

The designed model consists of 48.54 million parameters. The
inference time is 6.7 ms for each sample. The training process
involves training the coarse module first, followed by end-to-end
training of the whole framework. In the first stage, Linit is
minimized for the optimization of initial predictions and trained
for 100 epochs. In the second training stage,Lrefine is minimized,
aiming to optimize the refined normal/depth predictions and
confidence maps. The entire framework is then trained in an end-
to-end approach for an additional 20 epochs. The learning rate is
0.00005. The batch size is 16. The hyperparameter weights are
set as follows: λn = 1, λd = 5, λcn = λcd = 0.1. The threshold
of the berHu loss t is set to 0.2. Experiments are conducted on
a single NVIDIA Quadro RTX 8000 GPU.

C. Evaluation Metrics

For depth estimation, we adopt i) absolute error (Abs-err)
and ii) matching error (Match-err) to calculate the difference
between predicted and ground truth depth maps

Abs-err =
1
N

N∑
i=1

|di − d∗i | (6)

Match-err =
1
N

N∑
i=1

|d′i − d∗i | (7)

d′ = d× mean(d∗)
mean(d)

(8)

where i and N represent the index and the number of samples,
respectively; d, d′, and d∗ indicate predictions, scaled predic-
tions, and ground truths, respectively. Abs-err directly reflects
the quality of the depth predictions, while Match-err avoids
the impact of the scale on errors and can better describe the
geometric shape of objects.
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TABLE II
EXPERIMENTAL RESULTS OF NORMAL ESTIMATION ON OUR SYNTHETIC

DATASET

TABLE III
EXPERIMENTAL RESULTS OF DEPTH ESTIMATION ON OUR SYNTHETIC

DATASET

For normal estimation, we use the mean angular error (MAE)
as the evaluation metric

MAE =
1
N

N∑
i=1

arccos(ni · n∗
i )×

180◦

π
(9)

where n and n∗ represent the predicted and ground truth normal
maps.

D. Comparison

To evaluate the performance, we compare our method with
three state-of-the-art methods: DPPS [18], NASDE [28] (that
directly enforces the consistency between normals and depths),
and transformer-based method [35]. The baseline represents the
proposed method without i) the refinement module (referred to
as R) and ii) confidence information (referred to as C). Besides,
we normalize the input images by the maximum grayscale values
of all input images, so we keep the consistency of the light
intensities for all inputs.

1) Overall Performance: The experimental results of normal
and depth estimation are presented in Tables II and III, respec-
tively. For the normal estimation, the MAE and the percentage
of predictions with errors less than 5◦, 10◦, and 15◦ are used in
the assessment. These metrics provide insights into the accuracy
and reliability of the predicted surface normals across the test
set.

The following can be seen.
1) Our baseline outperforms DPPS with an improvement

of 4.50◦ for the normal estimation and 1.57 mm for the
depth estimation. It demonstrates that the performance of
the photometric stereo method benefits from the berHu
loss and normalization preprocessing of the inputs.

2) The results indicate the propose method significantly
outperforms current methods DPPS and NASDE with an
improvement of 61.85% (DPPS) and 41.01% (NASDE)
for normal estimation and 30.69% (DPPS) and 22.83%
(NASDE) for depth estimation, and slightly outperforms
transformer [35] with an improvement of 23.01% for
normal estimation and 8.37% for depth estimation. In
addition, the proposed method (6.07 ms) is obviously fast
than NASDE (38.52 ms) and transformer (49.17 ms), as
described in the Supplementary Material.

3) As the input images are captured by one single camera,
there exists inherent ambiguity in the depth dimension.

Match-err can better represent the accuracy of reconstructed
surfaces by alleviating the depth ambiguity. Therefore, the
Match-err is lower than Abs-err for all three methods. The pro-
posed method outperforms current methods with the Match-err
of 5.80 mm, which is around 2.90% to the depth range and 1.55%
to the maximum depth values in the proposed dataset.

The qualitative comparison is illustrated in Fig. 4. The pro-
posed method generates more accurate normal and depth maps
compared to DPPS.

2) Ablation Study: In the conducted ablation study, the ef-
fectiveness of each component in the proposed method is ana-
lyzed by comparing different configurations: Baseline with the
proposed refinement module (Baseline + R), and baseline with
proposed refinement module and confidence maps (Baseline +
R + C), i.e., the proposed method. The results are reported in
Tables II and III, providing valuable insights into the impact
of each component on the performance of normal and depth
estimation.

1) Comparison between three methods: The results demon-
strate that both the refinement module and the introduced
confidence map contribute to the overall performance
improvement.

2) Analysis of baseline and Baseline + R: From Table II,
the Baseline + R configuration achieves superior per-
formance in metrics, such as MAE, Acc10, and Acc15.
However, it exhibits lower accuracy in the Acc05 met-
ric. This discrepancy can be attributed to the refinement
process, which primarily concentrates on enhancing the
global regions of the initial normals by leveraging the
advantages of the initial depths. Consequently, there may
be a relative degradation in performance within the local
regions of the normal map.

3) Impact of the confidence module: The proposed confi-
dence module addresses the abovementioned issue. The
Baseline + R + C significantly improves the accuracy
from 47.80% to 63.87% in the metric of Acc05. This
improvement is attributed to the incorporation of con-
fidence information, enabling the optimization process
to effectively acknowledge and account uncertainties in
various regions of reconstructed objects.

4) Differential improvement in normal and depth estimation:
The experimental results indicate that the improvement in
normal estimation with the inclusion of confidence infor-
mation is more significant compared to depth estimation
in photometric stereo. This discrepancy is attributed to
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Fig. 4. Comparison of the proposed method with the existing method (DPPS [18]) for normal and depth estimation on the test set. Backgrounds
are removed by the masks, rendering the values in the background meaningless.

the inherent challenges of depth estimation on integrating
information across the scene under various illumination
and textureless surfaces. These challenges inherently in-
troduce higher uncertainty in depth predictions.

The qualitative comparison of the ablation study is involved
in the supplementary material. By conducting this ablation study
and analyzing the comparative results, the effectiveness of each
component in the proposed method is verified, and valuable
insights are gained regarding their impacts on the performance
of normal and depth estimation.

E. Discussion

1) Validation of Confidence Map: In Figs. 5 and 6, the es-
timated normal/depth maps and their corresponding confidence
maps are showcased. It is observed that the predicted confidence
maps exhibit a close correspondence with the error maps, indi-
cating that the predicted confidence maps effectively capture the
uncertainty and provide valuable guidance about the confidence
level of the predictions. Notably, the predicted confidence maps
are optimized by the proposed framework without relying on
predefined or ground truth confidence.

The results obtained from the ablation study, combined with
the visualizations presented in Figs. 5 and 6, emphasize the
significance of the predicted confidence maps in practical ap-
plications, particularly in industrial contexts. These confidence
maps offer valuable insights into the reliability and accuracy of
the predictions even without the requirement of ground truth.
They pinpoint areas where predictions may be less reliable,

enabling researchers to focus efforts on improving accuracy in
those specific regions.

2) Analysis of Confidence Estimation for Depths and Nor-
mals: Compared to the predicted confidence map in the depth
estimation, the estimated confidence in the normal estimation
shows a better alignment with the error map, as illustrated in
Figs. 5 and 6. Particularly, the confidence level is presented in
the range from 0 to 1 for the normal estimation, and from 0.9 to
1 for the depth estimation.

This is because the photometric stereo method used for normal
estimation is more robust compared to depth estimation from
a single camera. For normal estimation, the key factor is the
material properties and the change of light intensities, which can
be inferred from images captured by a single camera. However,
depth estimation is more challenging due to its vulnerability in
textureless surfaces and susceptibility to noise under various
lights, making it difficult to accurately predict depth maps.
Consequently, the predicted confidence in the depth estimation
may not align as closely with the error map as observed in the
normal estimation.

3) Confidence Map Versus Attention Map: In this study, the
predicted confidence map is different from the widely used
attention map, but they share a similar concept to provide
extra information to steer the prediction process. The attention
map [36] focuses on assigning higher weights to relevant and
representative features while reducing the influence of unrelated
features. The aim is to enhance the performance of a specific task
by selectively attending to important information. Instead, the
confidence map is designed to estimate the confidence level of
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Fig. 5. Visualization of the normal map and the corresponding confidence map generated by the proposed method from the test set. The regions
with smaller confidence values match well with the regions with larger errors of predictions.

Fig. 6. Visualization of the depth map and the corresponding confidence map generated by the proposed method from the test set. The regions
with smaller confidence values match well with the regions with larger errors of predictions.

predictions, which is particularly valuable by providing uncer-
tainty information about the measurement. The confidence map
is implicitly optimized by the difference between predicted and
ground truth normal and depth maps. It captures the reliability
of the predictions and provides valuable insights into the quality
of the results. By incorporating the confidence map into the
optimization process, the model can assign lower weights to
predictions in regions that are invalid or where the model faces

challenges due to inherent limitations, leading to an overall more
accurate estimation.

F. Evaluation on Real Samples

To validate the generalization ability of the proposed method,
we conducted physical experimental verifications on real ob-
jects. To capture images from real objects, we employed the
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Fig. 7. Visualization of predicted surface normals, depths, and corresponding confidence maps from physical experiments of measuring
(a) pumpkin sculpture and (b) bear sculpture. The rectangles with the same color indicate a consistent relationship. The predicted depth is
represented as a point cloud for better visualization.

setup described in Section III-A. Specifically, two objects are
chosen for this evaluation: a pumpkin sculpture and a bear
sculpture, both with reflective surfaces. The visualization of
predictions is presented in Fig. 7. It can be seen that visualization
of the predictions demonstrates plausible normals and depths for
both pumpkin and bear sculptures. Moreover, we use the results
in Fig. 7(a) as an example to illustrate the relationship between
predictions and corresponding confidences: i) the confidence
levels in the rectangles are significantly lower than other regions,
which denotes that the predicted normals in the rectangle regions
are in low confidence. In fact, the visualization of the predicted
normal shows two artifacts in the rectangle regions. ii) The
predicted depths in the blue rectangle regions are not reasonable
from the visualization due to the inconsistency with neigh-
boring values. Correspondingly, the confidence values in the
blue rectangle regions are lower than in other regions. Physical
experimental verifications are presented in the supplementary
video.

V. CONCLUSION

In this article, we present a confidence-aware photometric
stereo system based on deep learning for end-to-end normal and
depth estimation from images under different lighting condi-
tions. Our method exploits the relationship between the initial
estimation of normal and depth maps to further improve the
accuracy of predictions by the introduced coarse-to-fine refine-
ment framework. To get the confidence level of predictions, a
novel strategy is proposed to implicitly optimize and predict the
confidence maps. This enables the network to provide mean-
ingful confidence estimates for the normal and depth maps,

even in the absence of explicit ground truth for the confidence
maps. Extensive experiments demonstrate superior performance
achieved by the proposed method compared to the existing
methods and our baselines.
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