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Abstract
Manufacturing workers face prolonged strenuous physical activities, impacting both financial aspects and their health due to work- 
related fatigue. Continuously monitoring physical fatigue and providing meaningful feedback is crucial to mitigating human and 
monetary losses in manufacturing workplaces. This study introduces a novel application of multimodal wearable sensors and 
machine learning techniques to quantify physical fatigue and tackle the challenges of real-time monitoring on the factory floor. 
Unlike past studies that view fatigue as a dichotomous variable, our central formulation revolves around the ability to predict 
multilevel fatigue, providing a more nuanced understanding of the subject’s physical state. Our multimodal sensing framework is 
designed for continuous monitoring of vital signs, including heart rate, heart rate variability, skin temperature, and more, as well as 
locomotive signs by employing inertial motion units strategically placed at six locations on the upper body. This comprehensive 
sensor placement allows us to capture detailed data from both the torso and arms, surpassing the capabilities of single-point data 
collection methods. We developed an innovative asymmetric loss function for our machine learning model, which enhances 
prediction accuracy for numerical fatigue levels and supports real-time inference. We collected data on 43 subjects following an 
authentic manufacturing protocol and logged their self-reported fatigue. Based on the analysis, we provide insights into our 
multilevel fatigue monitoring system and discuss results from an in-the-wild evaluation of actual operators on the factory floor. This 
study demonstrates our system’s practical applicability and contributes a valuable open-access database for future research.
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This research enhances occupational health by improving ergonomics and managing fatigue among manufacturing workers. 
Leveraging advanced multimodal wearable sensors and lightweight machine learning algorithms, it enables continuous, real-time fa-
tigue monitoring. The study addresses limitations in adaptive sensing technologies and explores complex biomarker-fatigue relation-
ships. Data from 43 participants in diverse manufacturing tasks reveal insights such as the impact of nondominant arm kinetics on 
fatigue, and the role of body mass, age, and gender. The research also highlights the significance of physiological signs in fatigue per-
ception and confirms that fatigue characteristics are highly personalizable, with better prediction performance for users whose data 
were included in training.

Competing Interest: The authors declare no competing interests. 
Received: April 11, 2024. Accepted: September 9, 2024 
© The Author(s) 2024. Published by Oxford University Press on behalf of National Academy of Sciences. This is an Open Access article 
distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by- 
nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly 
cited. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions 
can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please 
contact journals.permissions@oup.com.

Introduction
Manufacturing workplaces are physically strenuous, with US em-
ployers incurring an estimated annual cost of $136 billion due to 

health-related loss in productivity in the manufacturing sector 
(1). Surveys consistently show a high prevalence of fatigue among 
manufacturing workers in Canada (2), the EU (3), Japan (4), and 
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Sweden (5). A meta-analysis of fatigue research indicates that 90% 
of shift workers regularly experience fatigue and sleepiness dur-
ing work (6). Fatigue not only increases the risk of injuries and ac-
cidents, causing loss of production, but also leads to significant 
health issues, including discomfort, reduced motor control (7, 8), 
musculoskeletal disorders (9), chronic fatigue syndrome (10), 
and diminished immune functions (4). The economic loss of 
chronic fatigue syndrome alone is estimated at $17 to $24 billion 
annually (11).

There are no universally recognized biomarkers to quantify 
physical fatigue, making the task of fatigue monitoring in manu-
facturing workers extremely hard. Some studies (12) view physical 
fatigue as a rule-based target—Rapid Upper Limb Assessment 
(RULA) and Rapid Entire Body Assessment (REBA) scores (13–15)— 
based on the pose estimates of the operator. Moreover, fatigue 
is not an isolated musculoskeletal outcome but a byproduct of ex-
haustion as well. Perceived fatigue scores using Borg ratings (16) 
are more accurate. Many studies utilize the standardized 
Perceived Stress Scale (PSS) (17, 18) and Trier Social Stress Test 
(TSST) (19) to measure psychological stress with absolute labels 
for fatigue and nonfatigue (based on the stress test protocol). 
Other domains use TSST-like settings to arrive at a Borg rating of 
perceived exertion (RPE). Although Maman et al. (20) used multi-
scale fatigue, while for reporting, they ultimately converted it to 
a binary state for final prediction. Another study (21), used RPE to 
quantify physical workload by tracking energy expenditure and 
compared the physiological and perceptual responses between 
bar benders and bar fixers when they worked in a hot environment. 
Most, if not all, of the previous works view fatigue as a dichotom-
ous variable which may be an oversimplification of physical exer-
tion. There is limited consensus in either the sports science (22) 
literature or manufacturing applications (23) that fatigue should 
be viewed as a continuous variable. Some works (24) also assume 
that the worker starts from a nonfatigued state and the prediction 
model is used to determine a deviation from this baseline.

A focal technique for endocrine stress measurement when sub-
jected to psychosocial stressors involves salivary cortisol (25, 26) 
measurement. Extending this momentary measurement to indi-
cate physical fatigue in operators on factory floors is impractical. 
Most pose-estimated physical fatigue indicators, such as RULA 
and REBA scores (13–15), rely on visual sensing for accurate skel-
etal tracking, which can intrude on worker privacy. Using self- 
reported fatigue scores with wearable sensing has emerged as a 
more favored framework for monitoring fatigue unobtrusively. 
Physical fatigue labels are more challenging on account of the 
subjectivity of fatigue per individual, especially under realistic un-
controlled manufacturing protocols. Some fatigue-sensing ap-
proaches rely on wrist-based wearables (27), which only provide 
a single point of measurement and can be obtrusive in manufac-
turing settings since most operators wear gloves for their tasks.

In the manufacturing and ergonomics literature, many works 
(24, 28) base their fatigue-sensing on gait characterization or lower- 
limb kinematics under the assumption of significant walking dur-
ing an operator’s shift. Zhang et al. (29) achieved an accuracy of 
94% in a fatigue monitoring study using inertial motion units 
(IMUs) and a support vector machine (SVM) based learner for a 
bricklaying task. The hypothesis was that jerk values can be com-
pared between rested and fatigued states to provide a fatigue 
scale. Their study used only expert masons for the task and hence 
nothing can be said for the applicability of the system to a wider 
demographic. We move away from this assumption and focus 
on two very different manufacturing tasks and study task-specific 
metrics that can indicate operator fatigue.

At a high level, physical fatigue lacks universally accepted met-
rics and distinct biomarkers. Considering previous works in fa-
tigue monitoring and the practical challenges of implementing a 
continuous fatigue monitoring system in manufacturing settings, 
we identify several prominent research gaps: (i) limited expres-
siveness of physical fatigue states, resulting in oversimplified 
characterizations, (ii) absence of multimodal, practical sensing 
and analytics frameworks that are suitable for deployment on fac-
tory floors, and (iii) a shortage of publicly available datasets for 
studying physical labor-induced fatigue.

To address the first challenge of the constrained depiction of fa-
tigue states, we view an operator’s fatigue state as a continuous 
hidden variable. We hypothesize that with multimodal sensing 
capabilities, we can capture physiological and kinematic compen-
sation when an operator develops fatigue. To provide meaningful 
feedback to the operators and manufacturing companies, we sup-
port a more granular fatigue scale compared to other studies (30, 
31). Consequently, we measure fatigue based on perceived 
exertion (RPE), which is commonly used in many sports science 
studies. We specifically use a linear projection of the Borg Scale 
between 0 and 10. In addition to introducing fatigue as a continu-
ous target variable, we integrate a custom asymmetric objective 
into our machine-learning approach, emphasizing an operator- 
centered approach to fatigue modeling.

Secondly, we explore multimodal wearable sensors that are 
flexible and skin-compatible for continuous wear. With efficient 
learning techniques and the different views for fatigue markers, 
we aim to enable timely prevention to relieve fatigue by making 
predictions close enough to human perception. Our prediction 
model makes use of data from an unobtrusive sensing system 
that utilizes state-of-the-art soft wearable wireless sensors 
(ANNE and ADAM sensors) first introduced by Chung et al. in 
(32, 33). The wearable system is time-synchronized and can be 
controlled using a central hub streaming real-time vital signs in-
cluding electrocardiogram (ECG), heart rate (HR), skin tempera-
ture, and locomotive signals from the accelerometers and 
gyroscopes.

Finally, we gather data under realistic conditions by replicating 
two strenuous manufacturing tasks across 43 participants. We 
perform comprehensive characterization and validation through 
large-scale data collection in a laboratory setting, which will be 
made publicly available to promote further research in this 
area. Additionally, we demonstrate our method on two factory 
floors. We further interpret our machine learning model and pro-
vide insights into the features that influence its prediction under 
various settings. We also report the user feedback on our method-
ology through ecological momentary assessment (EMA) (17). Our 
approach combines multimodal sensing with a data analytics 
framework and near-real-time visualization to predict the multi-
level fatigue of manufacturing operators.

Results
In this section, we briefly present the design of our study followed 
by a discussion on the feature analysis of predicting fatigue using 
different sensing modalities. We then present our regression- 
based formulation to predict continuous perceived fatigue using 
an asymmetric loss function with an average mean absolute error 
of 2.27 across multiple tasks and users on a continuous fatigue 
scale of 0–10. The overall study framework is illustrated in 
Fig. 1. Note that our target for prediction is a perceived rating of 
exertion (modified Borg scale (34)), which is a subjective variable. 
Studies (35, 36) have shown that applications (like emotion state, 

2 | PNAS Nexus, 2024, Vol. 3, No. 10

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/article/3/10/pgae421/7815440 by N

orthw
estern U

niversity School of Law
 - IN

AC
TIVE user on 15 O

ctober 2024



sports science, rehabilitation, etc.) relying on self-reported sub-
jective scores tend to be inherently noisy. Objectively quantifying 
the bias, risk, and subjectivity of a score is highly application and 
demographic-specific. With this noise in consideration, we certify 
the validity of our method by deploying them in-the-wild and 
across tasks. We also conduct ablation studies to show the impact 
on the nondominant arm as a prominent indicator of fatigue state 
across tasks along with individual-specific attributes like age, gen-
der, height, weight, etc.

Study overview
The goal of the experiment is to predict fatigue trends in a subject, 
while they are asked to perform predefined manual tasks simulat-
ing a manufacturing environment, using data from soft, flexible, 
wearable sensors, and a vision system. The tasks in this study 
are repetitive and physically exerting, involving intricate steps 
taken in real manufacturing settings. The iterative nature of the 
tasks facilitates comparative analyses of distinct temporal seg-
ments to characterize fatigue. The two manufacturing tasks are 
(i) Task Composite: Composite Sheet Layup and (ii) Task 
Harnessing: Wire Harnessing. A Movie S1 is provided to highlight 
the experimental protocols and task designs. Details regarding the 
test bed dimensions can be found in Figs. S1 and S2. The task 
protocol requires the subject to wear sensors to monitor vital 
and locomotive signs continuously. Additionally, we incorporate 
a weighted vest to exaggerate the induced fatigue in a reasonable 
duration for the study to mimic a full shift for a manufacturing 
worker. Each task consists of two rest periods of 5 min each at 
the start and end, as well as five segments of physical tasks. On 
average, each task takes a total of one hour. Before each data seg-
ment, the subject fills out a survey form to indicate their current 
fatigues as per the Borg scale.

Summary of predictive models
We formulate fatigue as a continuous variable and construct a 
regression model that can penalize incorrect predictions based 
on their exact error from a reported score. To handle a complex 
task in a data-poor setting we employ gradient-boosted trees- 
based regressor and a custom asymmetric objective for optimiza-
tion. Our feature set is constructed by fusing the vital and 
locomotive sensor data along with person-specific attributes 
(like age, gender, height, weight, etc.). We analyze two tasks and 
study the transferability across tasks, individuals, and the effect 
of various sensing modalities.

Data statistics from user study
We carried out extensive data collection at Northwestern 
University for 18 months under Institutional Review Board (IRB) 
approval (STU0021461) and endorsement by the US Army 
Human Research Protections Office (MXD191305). We collected 
data from 43 participants. After quality assessment (as shown in 
Analysis framework section), we obtained usable data from 41 
participants for the Composite Task and 36 participants for the 
Harnessing Task. The participants ranged from the age group 
18–56 years old. Both the tasks have nine female participants rep-
resenting about 23.7% of the total data. Figure S6 illustrates the 
self-reported fatigue scores by the participants during each seg-
ment of the tasks on a scale of 0–10. In Table 1, the ranges and 
average values of user statistics (age, weight, height, and gender) 
are reported. The average age of the participants from 
Northwestern University is 24.83, with four individuals aged 29 
or above. The oldest participant was aged 56 years. The weight 

range for participants lies between 96–220 lbs, with an average 
value of 154.09 lbs. The average height of the participants was 
173.05 cm. This study had a gender ratio (m/f) of 3.9. Most of the 
participants were university students with a few participants 
from the university workshop.

We derive various features from the preprocessed sensor data. 
To study their effects on perceived physical fatigue, we first 
use principal component analysis (PCA) (37). Examining the mag-
nitude of the eigenvectors indicates the feature-importance order 
as shown in Fig. 2 for a combination of Task Composite and Task 
Harnessing. The features are categorized as (i) person-specific fac-
tors (gender, age, weight, and height), (ii) physiological signs (heart 
rate, heart rate variability, and skin temperature), and (iii) 
IMU-related signs (accelerometer, gyroscope on five locations). 
The PCA analysis indicates that features based on an operator’s 
personal attributes and physiological signs are relatively more im-
portant across both tasks. Figures S8 and S9 illustrate explicit 
feature importance for the composite and harnessing tasks 
respectively.

Next, we compute Spearman’s correlation matrix which as-
sesses the strength and direction of monotonic association be-
tween two variables (38). Figures S10–S12 depict the correlation 
analyses of the standardized feature space for the Task 
Composite, Task Harnessing, and a combination of Composite 
and Harnessing tasks, respectively. The highest value for |ρ|, 
Spearman’s correlation coefficient across both tasks for a random 
variable X ∈ Feature Space and Y = Fatigue Label, is 0.25 in Task 
Composite (Fig. S10) for average skin temperature and 0.29 in 
Task Harnessing (Fig. S11) for cardiac capacity. Across all the 
task settings, we consistently observe that the velocity of the 
ADAM5 sensor on the chest (rms_imu5_vel) has a negative rela-
tion with the fatigue variable, which could indicate an overall 
slowness in the operator as fatigue levels rise. We observe ρ > 
0.7 for features *_imu1_* and *_imu3_* in Task Composite in 
Fig. S10 corresponding to right upper and left upper arm ADAM 
sensors, respectively. This can be attributed to the rhythmic/sym-
metric nature of this task. The Spearman correlation between 
average heart rate (avg_hr) and average heart rate variability 
(avg_hrv) for the Task Composite, Harnessing, and the combined 
dataset are 0.15, −0.45, and 0.001, respectively. Past works have 
supported such observations that under parasympathetic or sym-
pathetic stressful conditions there is an increase in heart rate and 
a decrease in heart rate variability (39, 40).

Data statistics from performance tracking
Fatigue can negatively affect performance. Thus, tracking per-
formance can give valuable insights into fatigue effects and how 
these effects can be curbed. To this end, the tasks designed also 
have a scoring metric defined to allow performance tracking. 
This can be used to check for periods where the quality of the 
job is suffering and further understand the role of fatigue in the 
decrease in operator performance.

Table 1. Summary of user-defined statistics including ranges and 
average values for age, weight, height, and gender ratio (m/f) of all 
Northwestern University participants.

User statistics Average Max Min

Age (years) 24.83 56 18
Weight (lbs) 154.09 220 96
Height (cm) 173.05 190 151
Gender ratio (m/f) 3.90
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The performance metrics are defined for the two designed manu-
facturing tasks as follows. For Task Composite, performance can be 
judged by sheet placement, orientation, and quality of smoothing. 
Line detection is used to pick out the sheet’s position relative to 
the mold. The scoring script then checks the placement of each 
sheet and provides a score for the same. Details regarding perform-
ance metrics for Task Composite can be found in Fig. S3. For Task 
Harnessing, the quality of the job would be determined by the tight-
ness and positioning of the zip ties within the predefined zones 
along the cable. We measure the length of the tail end of the zip 
tie after it has been tightened. Participants were asked to trim the 
zip tie after tightening. The length of the trimming is measured 
and compared to a benchmark value. The trim length relates to 
the effort put into applying that zip tie.

Figure 3 presents the performance scores obtained by partici-
pants for the two tasks. The scores tend to improve around Rep 
2 or 3 for both tasks which can be explained partly due to “task 
learning.” Subjects adapt to the requirements of the unseen re-
petitive task after a couple of tries. However, the average scores 
tend to drop around Rep 4 and Rep 5 which may be due to the 
fatiguing nature of the task after a certain period. The standard 
deviation of repetition scores across all subjects increases from 
Rep 1 to Rep 5. This is an indicator of the difference in fatiguing 
tendencies across different subjects. All subjects start from a 
well-rested state (low variance in early repetition scores) and 
move towards a fatigued state. Some subjects may tire more easily 

than others resulting in higher score variations towards the later 
repetitions. Another observation made is the range of scores 
obtained for both tasks varies drastically. Scores remain nearly 
consistent for Task Composite, whereas a wide range of perform-
ance scores is obtained for Task Harnessing.

Evaluation of predictive model across tasks
The distribution of physiological signs varies across individuals 
while also having a temporal shift for the same individual. Since 
our task duration is generally one hour we assume no major be-
havioral changes due to factors other than fatigue. We can extend 
this assumption to distinguish different individuals being markers 
of distinct physiological distributions. The distribution of the loco-
motive signs is dependent on both the individual as well as the na-
ture of the task. We evaluate our model performance under two 
major categories—performance on unseen individuals and per-
formance on unseen tasks.

One of the pivotal design choices in our study is the adoption of 
a custom asymmetric loss function, which strategically penalizes 
under-predictions more severely than over-predictions. This ap-
proach is specifically tailored to align with our design philosophy 
of prioritizing operator-centric considerations in manufacturing 
applications, where minimizing underprediction errors holds crit-
ical importance. We illustrate an instance of our prediction in 
Fig. 4 where the number of underpredictions by the same model 

Fig. 1. Overview of the system design. a) (i) Wearable sensor data snapshots and sensor locations are indicated on the operator. (ii) The auxiliary vision 
system tracking the skeleton of operator motions. b) Composite sheet layup (Task Composite) and wire harnessing (Task Harnessing) setups are shown 
with task protocols. c) Overall machine learning pipeline—data preprocessing, ECG denoising, data filtering, and windowing, followed by model training 
and evaluation. d) A mock-up of the visualization dashboard, which gives near-real-time feedback to the operator.
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is reduced due to our adopted asymmetric objective. In Table 2, we 
report the complete performance statistics by running each ex-
periment with three different seeds for three metrics: root mean 
squared error (RMSE), mean absolute error (MAE), and the under-
prediction rate (UR).

Our custom asymmetric LINEX objective achieves an average 
underprediction rate of 0.38, significantly outperforming the sym-
metric objective’s rate of 0.71. Notably, our approach not only 

meets the operational target of maintaining an underprediction 
rate below 0.5 but also exhibits a 28% improvement in the MAE 
scores on average over the symmetric counterpart. As shown in 
Fig. S6, the distribution of self-reported labels is not uniform. 
Our hypothesis posits that the imposition of intensified penaliza-
tion for over-predictions compels the model to acquire knowledge 
about patterns within regions exhibiting elevated levels of fatigue, 
despite the availability of comparatively limited data for such 

Fig. 2. Feature importance using PCA for the combination of Task Composite and Task Harnessing. The acronyms are explained as RMS, root mean 
square; HR, heart rate; HRV, heart rate variability. The details of ADAM and ANNE sensors are given in the Sensing framework section. For brevity, we 
refer ADAM sensor locations as LL: left lower arm; RL, right lower arm; RU, right upper arm; LU, left upper arm.
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regions. We also observe that across all task settings, there is an 
average of 21% boost in performance when the users being trained 
and tested on are overlapping. This aligns with the hypothesis 
that the individual operator’s distribution can be very different 
and transferability of an existing trained model to a new operator 
may suffer. This observation also assures that if some training 
samples are provided for an operator it can perform well on un-
seen samples of different fatigue stages of the same operator (in 
this case with an average mean absolute error of 2.44). We also ob-
served that training a model on Task Harnessing and transferring 
it zero-shot (without any fine-tuning) to nonoverlapping users 
performing Task Composite samples yields consistent perform-
ance comparable to in-domain data, while, transferring from 
Task Composite to Task Harnessing shows a slight decrease in 
performance (by 3.25%). Generally, across the overlapping and 
nonoverlapping users’ test set, we observe the minimum average 
MAE of 2.29 while optimizing an asymmetric objective in the case 
of combined tasks using only physiological sensing features 
(ANNE sensor). This could be due to two reasons: (i) a larger train-
ing dataset due to combined tasks and (ii) multiple tasks allow the 
model to learn generalizable fatigue patterns which help in pre-
dicting fatigue of unseen targets.

Model explainability and interpretability
Analysis of the importance of sensing modalities
We want to study the impact of every sensing modality on the 
predictive abilities of the model. Consistent with our previous def-
initions of modalities, we consider physiological signs, person- 
specific features, and the five locations of the locomotive features. 
We evaluate the model performance by systematically leaving 
each modality out and training the model. Figure 5 shows this 
evaluation across the two different tasks and their combination 
under nonoverlapping user settings. We leave the same users 
across all settings for consistency.

We observed a consistent decrease in performance across all 
three task settings when the left upper and lower arm features 
were removed, resulting in an average drop of 4.76%. This 

contrasts with an 8% decrease specifically in the harnessing task 
when both the upper and lower right arm features were removed. 
This disparity suggests that the movements of the nondominant 
arm may universally signal fatigue, independent of the specific 
task being performed.

Furthermore, we observe that physiological indicators such 
as heart rate, skin temperature, and heart rate variability exert 
a greater influence on Task Harnessing compared to Task 
Composite. This distinction may stem from the unstructured na-
ture of movements in Task Harnessing, which diminishes the pre-
dictive power of limb-related features in indicating fatigue. It is 
noteworthy that removing a sensing modality often results in de-
creased model performance for Task Harnessing, indicating the 
necessity of multiple modalities to effectively capture fatigue in-
dicators in more complex tasks. Additionally, person-specific 
characteristics significantly impact model performance.

The ADAM sensor, located on the chest, measures the opera-
tor’s overall locomotion. In this analysis, the model shows a 
2.2% performance improvement in the combination of Task 
Composite and Harnessing. Specifically, Task Harnessing exhibits 
a 6.3% improvement compared to Task Composite’s 1.4%, sug-
gesting a potentially more critical role of the chest-located IMU 
for certain tasks over others.

Shapley scores
Understanding the inner workings of machine learning models is 
crucial, particularly when applying to human-centric decision- 
making. Due to the limited dataset and small machine learning 
models in this application, we can objectively explain much of 
the model behavior using the state-of-the-art model explanation 
tool called SHapley Additive exPlanations (SHAP) (41).

This tool offers explanations that are independent of the spe-
cific model employed and utilizes all samples to generate model 
explanations. We computed the SHAP values for each feature of 
every subject and visualized them as dots in an information-dense 
summary plot as shown in Fig. 6. In this plot, each dot represents 
both the true feature value and the corresponding SHAP value. 

Fig. 3. Performance and fatigue score distribution across each repetition for both a) Task Composite and b) Task Harnessing.
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The true feature value is indicated by a color map, with blue rep-
resenting lower values and red representing higher values. The 
x-axis position of a dot represents the SHAP value. The absolute 
SHAP value reflects the relative importance of the feature, and a 
positive SHAP value (on the right side of the x-axis) suggests a ten-
dency for a positive prediction by the model, while a negative val-
ue suggests the opposite. Figure 6 ranks all the features based on 
the average of the absolute SHAP values from all the dots, indicat-
ing their importance. Our model demonstrates a higher fatigue 
prediction with a higher value of maximum heart rate in a given 
window. Also, the chest ADAM sensor (ADAM5) RMS angular vel-
ocity for a window is ranked as one of the top features in terms of 
feature importance, which aligns with the hypothesis that this 
modality captures the overall ambulatory intensity of the subject. 
Previous literature (42) shows that jerk is an important metric in 
inducing fatigue in manufacturing tasks specifically. Our model 
agrees with this trend. Moreover, our model shows that two of 
the features from the left lower arm contribute to the top features. 
This is consistent with our previous observation that features 
from nondominant hands indeed reflect fatigue-inducing pat-
terns. Additional explainer plots specific to individual tasks are 
shown in Fig. S14.

In-the-wild User Feedback Study
The primary target users of this technology are the operators on 
the factory floor. The factory’s decision makers can make use of 
this information to take necessary operational steps in the form 
of interventions or adaptive work schedules. To study the rele-
vance of our methodology, we conducted two studies in large 
manufacturing factories in the Midwest and West Coast for each 
of the tasks. We tested the model trained on data from subjects 
at Northwestern University for their transferability on actual fac-
tory workers whose age group and skillset vary from the trained 
population. The task setups used are actual manufacturing units 
instead of the mock-up version used at the Northwestern facility. 
The task protocols were slightly modified (fewer repetitions, cam-
era positioning, etc.) to adhere to factory norms and accommo-
date all participants. One of the learnings from the study 
conducted earlier on in our project, was the skewness in the 
training data for gender. We then incorporated the gender of a 
subject as a feature to alleviate the issue and mindfully advertised 
our study to female volunteers to overcome this bias. In some 
cases, we also discovered that following the Hawthorne Effect 
(43), some participants were reluctant to report any higher fatigue 
throughout the task. Given a factory setting where higher or lower 
fatigue reports may draw administrative attention, users may be 
biased and stick to reporting neutral scores. Throughout this 
factory demonstration, we were able to obtain 75% of the total 
data collected due to sensor issues like perspiration, obstructed 
skin-to-sensor contact, etc. Adhesion can be affected by many 
factors such as sensor location, sweat, or contact with clothing 
and equipment. The conductive hydrogel adhesive used to se-
cure the wearable sensors ensured skin-to-sensor contact, in 
most cases. However, excessive perspiration or equipment 
contact with sensor can remove the sensor from the body tem-
porarily. This is disruptive towards the manufacturing working 
environment. To alleviate these potential issues, an additional 
layer of tape was applied on the sensors and skin to further se-
cure their position. Most of the participants gave feedback that 
the wearable sensors were indeed unobtrusive and that such 
technology can enhance the quality of the working environment. 
This demonstration further supports our observation of T
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transferability on unseen (nonoverlapping) subjects across tasks 
as reported in Table 2.

User feedback and adoption
The two tasks selected use manual labor as the main power source. 
Measuring the level of worker fatigue can interfere with the activ-
ities of the workers. Workers may feel hindered by the equipment 
installed, resulting in bias due to the perceived inconvenience of 
workers. Hence it was imperative to get the views of the personnel 
that will use this technology in the future. Important attributes for 
the system to be usable would be comfort, compact form factor to 
avoid hindrance or interference with the task, data security and re-
liability, and finally usefulness of the fatigue sensing capability. To 
this end, all our participants were asked to complete a survey fol-
lowing the completion of tasks. The question prompts relate to (i) 
ease of wearing and removing the sensor, (ii) comfort on skin, (iii) 
hindrance to motion, and (iv) agreement to data tracking. Each 
question was answered with a score from 1 to 5, with 1 and 5 corre-
sponding to complete agreement or disagreement, respectively, 
with the prompt. Eighty-six different responses across two tasks 
were collected from all Northwestern experiment participants 
and are presented in Fig. S4. Three responses were collected from 
the “in-the-wild” study and are presented in Fig. S5. The mean re-
sponse for the questions relating to ease of application, comfort, 
and future use was 4 out of 5. The mean response for the question 
relating to hindrance was 2 out of 5, which is favorable (1 relates to 
no hindrance and 5 relates to maximum hindrance). Overall, a posi-
tive response was obtained from the Northwestern University par-
ticipants, with a general consensus that the sensor system is 
unobtrusive and easy to use.

Discussion
Previous surveys across different countries indicate a high preva-
lence of fatigue among manufacturing workers, with potential 

consequences including increased injury risk, reduced production, 
and various short-term and long-term health issues. The improve-
ment of working ergonomics and fatigue mitigation would greatly 
benefit manufacturing workers. Current challenges include the 
need for unobtrusive fatigue sensing methods and uncertainty re-
garding biomarkers. The adoption of new technologies for real-time 
fatigue prediction holds the potential to revolutionize manufacturing 
by optimizing work schedules and implementing adaptive work/rest 
cycles, addressing the issue of a lack of deterministic biomarkers.

Systematic large-scale studies on biomarkers for physical fatigue 
are rare. In this research, we focus on modeling fatigue as a con-
tinuous target and collect data in a more real-world manufacturing 
setting from 43 subjects for two tasks. We evaluate various on-body 
sensing modalities and study their influence on fatigue state.

Our first major finding is that, for true meaningful feedback 
about the operator’s fatigue, we need to view the fatigue as a con-
tinuous variable. The past works of classifying a state as fatigued 
vs. nonfatigued are not very informative for taking preemptive 
safety measures. We showcase a regression-based formulation 
for fatigue-state and predict worker’s fatigue on a scale of 0–10. 
Moreover, we drop any assumption of a worker being in a rest state 
(fatigue level 0) initially. This allows for a more practical approach 
to developing a closed-loop real-time fatigue prediction system.

Our second major finding is that modeling fatigue is very complex 
due to noisy self-reported labels. As we show quantitatively, it is also 
highly person- and task-specific. The nature of the task dictates the 
order of importance of various biomarkers. For example, for Task 
Composite which has more synchronized movements, PCA of fea-
ture vectors as well as Shapely scores of the trained model agree 
on the influence of locomotive features on fatigue state. Also, we 
show that testing a model on an entirely new individual whose 
data have not been used for training the model, has about 21% 
drop in the average performance. This is reasonably expected since 
the nonoverlapping users’ data are out-of-distribution from the 
sample of training data. The key is to identify the inter-person vari-
ability causing this gap in performance.

Fig. 4. Illustration comparing self-reported fatigue (blue markers) after each repetition with interpolated ground-truth fatigue (dotted line) used as the 
target for the predictive model. Predicted fatigue (cross-marked line) using a) an asymmetric linear-exponential (LINEX) objective with mean-absolute 
error (MAE) of 2.01, emphasizing operator-centric design by penalizing underpredictions (underprediction rate, UR = 0.18), and b) a symmetric 
mean-squared-error minimization objective resulting in MAE of 2.82 and UR of 0.46.
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Our third finding is that the objective of the machine learning 
module needs to be more human-centric for such applications. It 
should penalize under-prediction (the operator is more fatigued 
than what the model predicts) more severely than over-prediction 
(the operator is less fatigued than what the model predicts). We pro-
pose the usage of an asymmetric loss function (Linear Exponential 
Loss [LINEX]) for optimizing our machine learning model which 
helps reduce under-prediction by approximately 50% compared to 
the traditional mean-squared-error loss function.

We are able to deploy a closed-loop system of continuously 
monitoring data from a worker using various wearable sensors 
to predict fatigue using a machine-learning-based inference en-
gine and provide feedback using a visual dashboard. The visual 
dashboard in Fig. 1d shows the most informative sensing data to 
allow the users to understand the health trends that lead to the 
predicted fatigue state. We have effectively validated this system 
in real-world factory settings with employees, reinforcing our con-
fidence in the technology’s effectiveness. User feedback has con-
sistently indicated a high level of acceptance and practical 
utility within the manufacturing industry. Although our over-
arching goal through this research is to ensure worker safety, 
mitigate risks, and empower operators through active feedback, 
we recognize the ethical and legal considerations associated 
with deploying such systems in real-world workplace environ-
ments. We are hopeful that ongoing technical advancements, in-
cluding our efforts in predicting physical fatigue in manufacturing 
settings, will inspire constructive discussions about deployment.

Materials and methods
Study design
Monitoring fatigue is challenging due to the subjective nature of 
the perception of fatigue across various demographics. The study 
was designed to minimize these subjective differences to a max-
imum extent, to avoid biases in the predictions. The task protocol 
followed for data collection was consistent between the two tasks. 

All task steps and protocols were approved by the Northwestern 
University Institutional Review Board and subjects provided writ-
ten informed consent. A total of six wearable sensors (one ANNE 
and five ADAM sensors) were used along with a vision system com-
prising two depth cameras (Intel Realsense D435 Depth Camera) 
and a regular HD webcam (Logitech C920x). The ANNE sensor 
was placed on the subject’s left upper torso, below the collarbone. 
The ADAM sensors were located at five different locations: upper 
and lower arm (bicep and inner forearm) for both sides and upper 
torso as shown in Fig. 1a. Depth Camera 1 was set up in front of the 
workspace to capture the joint movements of the subject. Depth 
Camera 2 was used to capture data during moments of occlusion 
in Camera 1’s data stream. The webcam was set on the ceiling 
with a bird eye’s view to record the task. This stream was used to 
calculate task performance metrics (refer to Fig. S3). The field of 
view (FOV) for the camera system subcomponents remained the 
same for every task session to maintain data consistency.

All six wearable sensors were sterilized with alcohol swabs pri-
or to application onto the subject. The soft, flexible wearable sen-
sor patch was secured onto the subject with the help of a 
disposable double-sided hydrogel adhesive. Finally, tape was ap-
plied on top of each sensor to ensure skin contact throughout 
the task time. Subjects were asked to provide personal details 
such as age, weight (lbs.), and height (cm). Subjects were then 
asked to put on an ageing vest (weighted vest) along with 10 lbs. 
in wrist weights. The vest allows for weights up to 40 lbs. in 
increments of 2.5 lbs. Subjects were given the freedom to select 
a comfortable weight level but were encouraged to take a challen-
ging weight for each repetition to ensure the development of fa-
tigue signs. The tasks to perform (Task Composite and Task 
Harnessing) are repetitive and split into five repetitions. The 
task begins and ends with a 5 minute rest period. Including rest 
periods, there are 7 different data segments generated for each 
task (two rest periods + five repetitions). Subjects were asked to 
periodically (after each repetition and after rest periods) fill out 
a survey form with subjective questions regarding their state of 

Fig. 5. Leave-one-modality-out analysis: a study to show the impact on model Performance when trained with one of the features left out (horizontal 
axis) in Task Composite (C), Task Harnessing (H), and a combination of Task Composite and Task Harnessing. The vertical axis represents the relative 
increase in performance for each task for their respective baseline mean-absolute-error (Task C: 2.45, Task H: 2.29, Task C + Task H: 2.41).
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fatigue. Of particular interest is the fatigue level selected by the 
subject after each period (repetition/rest). This value, ranging 
from 0 to 10 (0—no fatigue, 10—max fatigue) is used to quantify 
the subject’s fatigue level to help with model training. All user in-
puts (age, weight, height, fatigue levels, survey questions, ageing 
vest weight) were recorded on an iPad tablet. After every data col-
lection session, the sensors were disconnected and switched to 
data transmission mode by placing them onto the charging 
pads. The data were stored from each sensor in the form of raw 
files (.shrd). The raw files can be converted to .csv format with a 
file type converter.

Task protocol
We are motivated to use work-relevant manufacturing setups to 
simulate fatigue-inducing environments. Two experimental set-
ups were designed to conduct the study. These tasks allow partic-
ipants to get fatigued through physical exertion. An important 
consideration, in this case, would be the workload and time taken 
to complete the task. The format of the tasks is repetitive rather 
than sequential. This would allow us to compare data from simi-
lar segments of repeated motion at different points in time. Since 
we would like participants to try out both tasks designed, a task 
time of around 1 h is chosen. This ensures that some, if not all, 
participants show signs of fatigue towards the end of the task. 

To further accelerate exertion and fatiguing tendency, we used 
external weights to simulate an increased workload. Weighted 
vests (ageing suits) and wrist weights were used for this purpose. 
Ageing suits allow the subjects to feel the simulated fatigue in 
muscles. This is also helpful in mimicking a real environment, 
considering that a lot of subjects may be younger than the typical 
workforce that usually performs these tasks. No adverse events 
were reported during the course of this study.

Task Composite—Composite Layup
This setup simulates a typical composite sheet layup task, involv-
ing placing and smoothing out carbon fiber sheets on a complex 
mold geometry. The sheets will be placed according to a prede-
fined layout. Twenty-four sheets of different sizes are placed on 
the mold, in order, and smoothed out. The smoothing motion is 
important, even though it makes no difference in the stickiness 
of the sheets in the mock setup (due to the absence of resin). In 
an actual setting, the sheets would need to be smoothed out 
onto a mandrel with resin, to make sure it sticks and takes the de-
sired shape. It is important to try and mimic this motion to get an 
accurate representative task. Thin magnets have been provided to 
provide some bonding between the sheets. The colored lines, as 
shown in Task Composite image in Fig. 1b, are used for tracking 
performance metrics.

Fig. 6. Tree-based Shapley explainer for combination (Task Composite + Task Harnessing) tasks for all subjects.
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Task Harnessing—Wire Harnessing
Electrical wiring harnesses are critical components in many manu-
facturing products. Due to their complexity, they are one of the 
highest warranty items. Identification of root causes in the field 
can sometimes be very time-consuming and expensive, leading to 
customer dissatisfaction. Many internal standards have been de-
veloped over the years to improve the design and assembly of wir-
ing harnesses. A significant amount of operator training has been 
done. However, there is a continuous turnover of factory workers, 
and often inexperienced operators could potentially install these 
complex assemblies. The installation of wiring harnesses can be 
complicated. Some harnesses can weigh as much as 30 lbs. and 
need to be assembled in difficult-to-reach areas on a machine. 
This setup is used to simulate the task of applying zip ties to a cable 
system, performed by workers in a manufacturing setting. A test 
bed is designed to accommodate the cable system. Participants 
are asked to apply zip ties to predefined zones. This task allows par-
ticipants to mimic positions and postures taken by real manufac-
turing workers during a wire harnessing task. Nineteen different 
zones across a cable system are marked on the test bed. Subjects 
need to apply zip ties/cable ties at these zones, tighten them, and 
trim them. The dimensions of the test bed allow the worker to 
stay within range of the depth-sensing camera. Test bed images 
and dimensions can be referred to in Figs. S1 and S2.

Sensing framework
We use a multisensor framework to continuously monitor the 
physiological and locomotive signatures of the subjects through-
out the task duration noninvasively. We primarily use a wearable 
subsystem of sensors on the body for understanding the fatigue 
biomarkers. We also have a vision subsystem that is designed to 
capture the skeletal pose estimations of the worker and not the 
raw video footage. This is used to quantify performance metrics 
for the tasks.

The standard for monitoring physiologic function in individu-
als (including heart rate, ECG, respiratory rate, temperature, 
etc.) requires constant, wired attachment to a power supply and 
operators, which can limit visibility and impair the ability to func-
tion normally in a manufacturing setting. To simulate an ideal 
manufacturing setting, the sensor system must be small and com-
pact in form factor and must conform to the skin surface effect-
ively to prevent hindrance and disturbances during operation. 
The wearable sensors were originally developed at 
Northwestern University and manufactured by Sibel Health. The 
ANNE chest sensor and ADAM sensor have been used in multiple 
studies (ANNE (32, 44, 45) and ADAM (33, 46–48)). The sensors have 
been cleared by the Food and Drug Administration (FDA).

ANNE chest sensor is a flexible wearable device placed on 
the torso of the subject. The sensor provides ECG, respiratory rate 
(RR), seismocardiography, body orientation, skin temperature, activ-
ity levels, and vocal biomarkers (crying patterns, cough index) (44). 
The ANNE chest sensor includes a biopotential analog front end 
(AFE) (MAX30001; Maxim Integrated), a high-frequency three-axis 
inertial measurement unit (IMU) (LSM6DSL; STMicroelectronics), 
and a clinical-grade thermometer (MAX30205; Maxim Integrated) 
(45). The device can operate continuously and wirelessly for up to 
60 h, relying on wirelessly rechargeable lithium-polymer batteries 
(60 mAh). The data storage capacity is 4GB on the device. The elec-
tronic components are encapsulated with soft, flexible medical- 
grade polyorganosiloxane materials, and secured onto the skin us-
ing a thin, conductive hydrogel adhesive (KM 40A, Katecho). The 
ANNE sensor is placed on the subject’s upper left torso during the 

experiments. ADAM sensor is a high-resolution, soft, flexible, wear-
able mechanoacoustic device. The sensor makes use of a flexible 
printed circuit board (fPCB; 25-μm-thick middle polyimide with 
double-sided 12-μm-thick rolled, annealed copper, AP7164R, 
DuPont) with serpentine conductive traces. Chip scale components 
include a high-bandwidth, inertial measurement unit (IMU) with a 
triaxial accelerometer (LSMDSL, STMicroelectronics) serving as the 
key sensing element, a Bluetooth Low Energy (BLE) system-on-a-chip 
(SoC) for control and wireless connectivity, on-device memory mod-
ule for data storage, and a wirelessly rechargeable compact battery 
unit (47). The electronics are encapsulated by a thin, soft, elastomer 
membrane (Ecoflex, 00–30, smooth on, 300 μm) serving as a compli-
ant, nonirritating interface when secured using a thin double-sided 
biomedical adhesive. For this study, the ADAM sensor is placed on 
the subject’s bicep and inner forearm (both arms), as well as the 
upper torso.

The entire system is compatible with iOS devices for real-time 
streaming or on-sensor data storage synchronized with the cloud 
(HIPAA compliant/HITRUST certified web application). The myRA 
software application is available on iOS and enables multiple sen-
sors to be automatically linked and time synchronized. The soft-
ware further allows for both real-time streaming and data 
download features with raw data for further follow-on analysis.

Analysis framework

Data preparation
All the sensor data are time-synchronized and down-sampled to have 
a uniform sampling rate of 500 ms. As per the experiment protocol, 
the participants jump at the end of a repetition. This causes a spike 
in the ADAM sensors’ (IMU) data which serves as the marker for the 
duration of the repetition with a simple thresholding technique. 
Figure 1b illustrates the experiment setup and a timeline of the task 
protocol. Additional information regarding the raw signals obtained 
from the sensors can be found in the Figs. S16 and S17.

Data denoising and filtering
The ECG measurements from the ANNE sensor are sensitive to am-
bulatory signals. We leverage the R-peak detection algorithm from 
Lee et al. (33) with slight modification in the filtering scheme (49, 50). 
We have used a Least Mean Square adaptive filter for noise cancel-
lation followed by Band-pass filtering. The peak detector (33) ex-
tracts RR-time series and computes the temporal Heart Rate and 
Heart Rate Variability features. The motion-related signals meas-
ured from the ADAM sensors are filtered using a low pass filter 
with a cut-off of 15 Hz. Figure 1c shows the data preparation steps 
to convert the highly granular data to a tabular format to input into 
the machine learning model. These data are filtered based on the 
signal quality index (SQI) which is computed based on the correl-
ation between the ECG signal and the accelerometer data and is a 
number between 0 and 1. Any segment with a cumulative score 
less than 0.5 is discarded to maintain the input data quality of the 
machine learning model. From the total of 43 participants’ data, 
we have successfully processed 41 datasets for Task Composite 
and 36 datasets for Task Harnessing, following the SQI check.

Feature engineering
For every participant, we can effectively extract seven such repeti-
tions for a given task as illustrated in Fig. 1b—initial rest segment, 
five repetitions of the task, and a final rest segment. The next step 
in the machine learning pipeline is the feature engineering of the in-
put space in a more informative format. The denoised signal stream 
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is now sliced into fixed-size windows. Figure S13 illustrates the 
trend of mean absolute error for different window lengths and 
the best performance is achieved with a window of 3 min.

Table 3 summarizes the features from all the sensors, and 
Table S2 contains the comprehensive list of all the derived fea-
tures. In addition to traditional statistical features like mean, me-
dian, kurtosis, and skewness, we incorporate features influenced 
by individual attributes such as cardiac capacity and kinetic ex-
pense. We compute a dimensionless jerk using the formulation 
from Melendez-Calderon et al. (51). To quantify cardiac capacity, 
we employ a modified Karvonen (52) formula, setting it at 80% of 
the maximum heart rate, derived from the subject’s initial resting 
heart rate. This is computed as

Cardiac capacity = 0.8((220 − age) − HRrest), (1) 

where the mean heart rate approximates the resting heart rate 
(HRrest) during the initial rest period. For kinetic expense estima-
tion, we adopt a method inspired by Komaris et al. (53), utilizing 
the root mean square (RMS) velocity captured by ADAM5 as a 
proxy for the subject’s center of mass velocity. This computation 
incorporates the subject’s mass and that of any weighted vest 
worn during the activity. We compute,

Kinetic expense = 0.5(Mp + Mw)

���������������

v2
x + v2

y + v2
z

3



, (2) 

where Mp is the weight of the person, Mw is the weight of the vest 

donned during the experiment, and vi∀ i ∈ x, y, z is given as 

vi(t)= ∫t0 ai(τ) dτ where t is the time-step of the accelerometer data 
ai. All the features except the target fatigue labels are 
feature-scaled to a range of 0 to 10.

Data analysis
The reported fatigue label is a categorical variable in the range of 
0–10. However, there is a physical implication of the degree of mis-
predictions in the fatigue label. We formulate our objective to min-
imize a mean-squared error between the true and predicted labels. 
This translates our task as a regression where our key objective is 
to map the input features to a continuous output target. We leverage 
this idea of continuous targets to interpolate the momentary 
fatigue score of the subjects to establish distinct fatigue labels per 
segment of the data. We interpolate fatigue scores across each repe-
tition of the tasks based on the task duration using the equation 
fatiguenew = fatigueinitial + (fatiguefinal - fatigueinitial)/RepDuration. 
We choose a 3-min window for fatigue prediction with continuous 
fatigue targets between 0 and 10. Previously described feature engin-
eering techniques are key to the design of machine-learning meth-
ods in data-poor settings. Using raw physiological and ambulatory 
data in a sequential capacity (54) did not provide promising results. 
From our preliminary analysis of limited datasets, gradient-boosted 
trees implemented using the eXtreme Gradient Boosting (XGBoost) 
(55) have outperformed shallow neural networks and that is our 

choice of design currently for regressors. Previous works have also 
supported the superior performance of tree-based models on tabu-
lar data (56) and specifically low-resource stress prediction tasks 
(57). Our motivation for the asymmetric loss function is to train a 
more operator-centric model that penalizes under-prediction 
more severely than over-predictions. From our results, we also ob-
serve that such a choice has a regularizing effect and compensates 
for the lack of data in higher fatigue regions. We use the 
Linear-Exponential (LINEX) loss function for instilling this asymmet-
ric behavior to our objective as shown in Eq. 3. The degree of penal-
ization is dictated by the hyperparameter a as shown in Fig. S15.

E⟶2/a2[ea·E − a · E − 1], a < 0 (3) 

Training Scheme
We conduct our training and evaluations under the following key 
settings: 

1. Overlapping and nonoverlapping users
2. Cross-tasks and task-specific
3. Subset of features

Under all these scenarios, we conduct a grid-search-based (58) 
hyper-parameter optimization for the regressor with a five-fold 
cross-validation. The training and testing were conducted on an 
Intel(R) Xeon(R) Gold 6,130 CPU at 2.10 GHz. Each experiment is 
run for three seeds (2711, 2712, 2713), and the mean and standard 
deviation statistics are reported to account for performance vari-
ability. For overlapping users, we use an 8:2 ratio for training and 
testing, respectively. For nonoverlapping users, we hold out data 
from 8 randomly selected participants from the pool of 43 partic-
ipants. XGBoost is a lightweight model that supports model ex-
plainability. We leverage this property to understand the feature 
importance assigned by the model in making its prediction.

Evaluation metrics
To evaluate the performance of the models, we use Mean 
Absolute Error (MAE), Root Mean Squared Error (RMSE), and the 
Underprediction Rate (UR) as given below,

MAE =
1
n

n

i=1

yi − ŷi







RMSE =

�����������������

1
n

n

i=1

yi − ŷi
( 2






UR =
1
n

n

i=1

1 if ŷi − yi < 0,

0 otherwise



(4) 

where yi is the ground-truth of fatigue score and ŷi is the predicted 
fatigue score for the ith segment and n denotes the total number of 
segments.

Table 3. Summary of key features derived from the network of ANNE and ADAM sensors.

Signal category Features

Physiological/Vital signs Heart rate (HR), Heart rate variability (HRV), Skin temperature (statistically derived features—mean,  
standard deviation, skewness, kurtosis)

Ambulatory Features Chest IMU (ADAM5), Right Upper Arm IMU (ADAM1), Left Upper Arm IMU (ADAM3), Right Lower Arm IMU (ADAM2),  
Left Lower Arm IMU (ADAM4) (jerk, velocity, range of angular motion, statistically derived features—mean,  
standard deviation, skewness, kurtosis)

Person-specific Features Age, Gender, Cardiac Capacity, Weight, Height, Kinetic Expense
EMA Perceived Fatigue Label, Feedback on usability of the sensor-subsystem
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Visualization dashboard
Due to the use of a gradient-boosted trees model, the model size is 
small and allows for near-real-time inference. The inference re-
sults and the feature-extraction scripts are used to translate 
data into a format acceptable to Google Data Studio. We design 
a dashboard using this backbone to allow participants to interact 
with their data and model predictions and collect their feedback. 
A mock-up dashboard is demonstrated in Fig. 1d.
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