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Abstract

Directed energy deposition (DED), a metal additive manufacturing process, is highly
susceptible to process-induced defects such as geometric deviations, lack of fusion, and poor
surface finish. This work presents a build-height-synchronized fringe projection system for in-
situ, layer-wise surface reconstruction of laser-DED components, achieving a reconstruction
accuracy of 46 pm. From the reconstructed 3D morphology, two complementary geometry-
based point cloud metrics are introduced: local point density, which highlights poor surface
finish, and normal-change rate, which identifies lack-of-fusion features. These methods en-
able automated, annotation-free identification of common deposition anomalies directly from
reconstructed surfaces, without the need for manual labeling. By directly linking geometric
deviation to defect formation, the approach enables precise anomaly localization and ad-
vances the feasibility of closed-loop process control. This work establishes fringe projection
as a practical tool for micrometer-scale monitoring in DED, bridging the gap between process
signatures and part geometry for certifiable additive manufacturing.

Keywords: Directed energy deposition, Fringe projection profilometry, In-situ monitoring,
Additive manufacturing, Surface anomalies detection

1. Introduction

Directed energy deposition (DED) is a versatile additive manufacturing (AM) process
widely employed for the fabrication, repair, and modification of metallic components [I].
In powder-based laser-DED, metal feedstock is delivered into a laser-induced molten pool,
forming a series of beads that accumulate layer by layer to produce a three-dimensional (3D)
part [2]. This layer-wise material addition enables DED to offer several advantages over
traditional manufacturing methods, including the ability to produce complex topologies [3],
integrate multiple materials [4], and achieve region-specific flexibility [5]. Despite its ad-
vantages, the inherent complexity of DED process, encompassing heat transfer [0], material
flow [7], and solidification, raises concerns regarding inevitable defect formation [§]. Com-
mon anomalies include height deviations, lack of fusion (LOF), spatter particles, and gas
pores, which are mainly observable on the newly deposited layer before the subsequent layer
is added [9]. These anomalies are typically manifested through deviations in measurable
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quality indicators such as layer height, surface roughness, and geometric morphology, which
can be quantitatively assessed during the build. Compared to the more mature metal AM
process, powder bed fusion (PBF), anomalies in DED are both more frequent and more detri-
mental due to its distinctive deposition characteristics. Height deviations are particularly
critical [10], since the absence of a recoater makes layer height entirely dependent on process
parameters, causing cumulative bulging or valleys that can degrade dimensional accuracy
and even interrupt the build. LOF is also more severe in DED [11]], as powder blown into
the melt pool leads to inconsistent track overlap, and the relatively thick bead geometry
produces large, elongated pores compared to the smaller-scale defects typical of PBF layers
of ~ 20 pm to 50 pm. Finally, surface finish is generally poorer in DED, as it often exhibits
waviness and powder adhesion [12]. To detect anomalies in a timely manner before they are
obscured by subsequent layers, which may compromise mechanical strength and structural
integrity, in-situ and interlayer monitoring becomes critical for quality assurance.

Two-dimensional (2D) image acquisition and processing remain central to DED research.
One study reported a representative setup in which a CMOS camera was positioned laterally
to the melt pool and translated synchronously with the laser nozzle to capture continuous
grayscale intensity images of single-track deposits [13]. This configuration enabled dynamic
monitoring of deposition shrinkage, but became ineffective once multiple tracks consolidated
into a continuous surface. For defect monitoring in DED, the extreme processing environment
and the requirements for real-time and scalable inspection make visual methods particularly
appealing. Although 2D image-based approaches have been explored to observe the shape of
DED-printed components [12], the complex surface texture of DED-printed parts, combined
with shadowing effects and specular reflections, limits their reliability in detecting subtle or
recessed regions. To achieve more definitive and reliable detection, accurate 3D morphology
measurements are required.

Thus, several 3D measurement techniques have been employed for in-situ morphology
monitoring of DED. One widely adopted technique is line laser scanning (LLS), which cap-
tures the surface morphology by traversing the layer with a focused laser beam [14]. Tt is a
robust method suitable for deployment in manufacturing inspections under extreme condi-
tions [I5]. This method provides high-resolution surface profiling and enables the evaluation
of surface quality [16] as well as estimation of melt pool depth when used in conjunction
with melt thermometric measurements [I7]. However, it typically requires multiple scans
and subsequent registrations to reconstruct the full field [18], which is time-consuming and
can introduce errors during registration post-processing, ultimately affecting measurement
accuracy. Digital image correlation (DIC) has been employed for surface morphology mon-
itoring by tracking natural or artificially applied speckle patterns on the object surface to
infer 3D shape changes over time [I9]. This approach enables deformation monitoring and
facilitates the reconstruction of the complete thermo-mechanical history during the build
process [20]. However, its effectiveness deteriorates significantly on feature-deficient surfaces
and under varying lighting conditions, thereby limiting its reliability in practical DED ap-
plications. Closed-range photogrammetry (2D Imaging) reconstructs surface contours from
camera imagery [21], which is capable of capturing lateral profiles and two-dimensional de-
position geometry. However, it generally lacks the depth resolution required for accurate
surface characterization and is not well suited for monitoring the dynamic, layer-by-layer
evolution inherent to DED processes.



The limitations of these existing methods emphasize the need for an active illumina-
tion, full-field 3D measurement system that offers high depth resolution, low cost, and easy
integration into existing DED setups. To address this, we propose an anomaly detection
technique based on fringe projection profilometry (FPP). FPP is a structured light method
capable of micrometer-level 3D reconstructions of object surfaces by projecting fringe pat-
terns and analyzing their deformations using phase demodulation techniques. A summary
and comparison of these in-situ surface metrology techniques are presented in Table |1} Un-
like thermal or conventional optical monitoring approaches, FPP directly quantifies surface
morphology and offers high spatial resolution over a large field of view [22]. This shift from
proxy-based monitoring to true geometric evidence highlights that the morphology itself
encodes the presence of process anomalies, thereby enabling more reliable and automated
defect detection.

Table 1: Comparison of in-situ surface metrology techniques for DED.

Method Measurement Limitations in DED Axial Lateral
Principle Inspection Resolution Resolution

Laser Line Scan- Line-by-line Slow acquisition 1.5pm to 12 pm

ning [14][16][19] scanning (non-full-field), high-cost 247 pm?

Digital Image Full-field 3D Low accuracy on 12 pm 2um to 3 pm

Correlation [19] via stereo-DIC ~ low-texture surfaces

2D Imaging [21] 2D image Lacks 3D topographical N/A 250 pmP
capture data

FPP (this work) Full-field 3D Sensitive to specular 46 pm 12 pm

structured light reflections

& Varies with system configuration.
b Limited by pixel size and FOV.

Although commercial FPP systems have been successfully implemented in PBF for build
surface topography characterization, geometric feature extraction [23|, full-bed inspection
after powder recoating [24], and prediction of local density variations [25], their deployment
in DED remains largely unexplored due to the substantially different build strategies and
defect morphologies inherent to the process. In PBF, the powder bed is lowered after each
layer so the measurement surface remains at a fixed height, keeping the optics in focus [26].
In contrast, DED adds material on a stationary substrate, so the surface of interest rises con-
tinuously [27]. This necessitates dynamic refocusing to preserve triangulation geometry and
measurement fidelity across layers. To address this, we integrate a build-height—synchronized
FPP module that repositions its focal plane according to the nominal layer height, keeping
both projector and camera within their optimal working ranges throughout deposition. This
module can directly measure the as-built 3D morphology at micrometer resolution during
the build, thereby effectively closing the gap between real-time process monitoring and final
geometry validation. The resulting surface point clouds then serve as the foundation for
quantitative quality evaluation and automated anomaly detection.

Conventional non-learning-based image processing techniques, though widely applied in
PBF for tasks such as melt pool monitoring and defect detection, exhibit limited robust-
ness when transferred to DED. This limitation arises primarily from the unstable surface



brightness of DED builds, which is strongly influenced by illumination variability, specu-
lar reflection, and the inherent geometric complexity of deposited features. Moreover, the
analysis of 3D morphology data in DED remains nontrivial: accurate localization of surface
irregularities often requires manual annotation, introducing subjectivity and limiting scal-
ability. To overcome these challenges, we introduce a geometry-driven point-cloud analysis
pipeline that leverages local point-distribution density and the normal-change rate (NCR)
as complementary descriptors for unsupervised anomaly detection and segmentation. Point-
distribution density is sensitive to sampling sparsity caused by under-deposition or surface
discontinuities, whereas NCR highlights abrupt curvature transitions typically associated
with LOF or surface collapse. By jointly exploiting these geometric signatures, the pro-
posed approach reduces reliance on manual intervention, enhances detection consistency,
and provides a scalable framework for quantitative surface quality assessment in DED.
Together, these elements form a scalable, high-resolution, and cost-effective framework
for in-situ, interlayer surface morphology monitoring and unsupervised anomaly detection in
DED (Figure , advancing the instrumentation and analytics needed for in-process quality
assurance. Compared with focus-variation and laser confocal microscopy, our framework
achieves comparable accuracy without interrupting DED production; it further outperforms
DIC by eliminating additional lighting or surface treatment requirements [28]. Quantita-
tively, our method achieves a vertical root mean square error (RMSE) of £13 um on calibra-
tion blocks and £46 pm on actual DED-fabricated surfaces, and demonstrates a repeatable
lateral resolution of +11.8 pm, which is more consistent than that of laser line scanners un-
der practical working distances [29]. Beyond reconstruction, the geometry-driven anomaly-
detection pipeline provides the capability to automatically localize and segment surface ir-
regularities, reducing manual effort and improving consistency in quality assessment.

System Calibration Print—-Measure Loop Defect Detection Output

| FPP module Setup | Layer deposition —-| Local point density |—~| Surface topography |
FPP scanning

| camera calibration | —{ Normal change rate | Defectinfo

l ¢ Count
¢ Position
FPP calibration | 3D reconstruction | —| Anomaly detection | + Morphology
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Figure 1: Workflow of the in-situ DED monitoring framework.

2. Methodology

2.1. Fringe Projection Profilometry

FPP operates by projecting a sequence of sinusoidal fringe patterns onto the object sur-
face [30]. When these patterns are captured from an angle by a camera, surface height
variations cause local shifts in the observed fringe phase relative to a flat reference plane.
Through phase demodulation, these shifts are expressed as a wrapped phase map ¢,,. After



unwrapping the phase, this yields a continuous phase distribution ¢ proportional to the ob-
ject’s height via the system’s triangulation geometry [3I]. In practice, precisely determining
the relative pose between the projector, camera, and the object surface is challenging, par-
ticularly when the imaging sensors are enclosed within the device housing [32]. Fortunately,
the system is equipped with a translation mechanism that allows the projector and camera
assembly to move along the optical axis. This ensures that the relative position between the
surface and the imaging system remains constant during each measurement. As a result, the
complex geometric relationships can be effectively represented by a single phase-to-height
calibration constant C' [33].

In this study, a conventional phase-shifting algorithm is employed to retrieve the un-
wrapped phase ¢, which is linearly related to the surface height 2 as:

2= Co, (1)

where C' is the phase-to-height calibration constant [34]. This constant is obtained experi-
mentally by correlating phase changes with the known height profile of a reference surface.
The calibrated FPP system is subsequently integrated into the DED process, in which mea-
surement fidelity must be maintained throughout fabrication as the build height increases
dynamically.

2.2. System Clalibration

Accurate system calibration is essential for achieving high-fidelity 3D reconstruction and
precise anomaly localization. In this work, the calibration procedure consisted of two major
steps: camera parameter calibration and phase-to-height calibration. The intrinsic parame-
ters of the camera were estimated using MATLAB’s Camera Calibration Toolbox with a stan-
dard checkerboard target. Multiple images captured at varying orientations and positions
were processed to determine the focal lengths, principal point coordinates, and lens distor-
tion coefficients. These parameters were subsequently applied for distortion compensation,
ensuring geometric consistency and preserving measurement accuracy in the reconstructed
surface data.

Lateral pixel resolution was determined using the known dimensions of a 1.5 mm-pitch
checkerboard placed on the build plate within the sealed DED chamber. The physical spac-
ing, combined with the observed number of pixels per checker square, provided the pixel-to-
length scaling factor for subsequent 3D measurements. At a calibrated working distance of
205 mm, the camera’s field of view was approximately 49 mm x 36 mm. Given the image
resolution of 4128 x 3008 pixels, this corresponded to an effective lateral resolution of 11.8
nm/pixel.

After the camera parameter calibration, phase-to-height mapping was subsequently per-
formed to enable accurate full-field 3D surface reconstruction. A linear phase-to-height
calibration was conducted using an angle gauge block with a known 1° inclined surface was
placed on the build plate. Based on the calibrated lateral resolution, a 20 mm segment
along the slope was selected as the calibration region. As shown in Figure [2] the unwrapped
phase values within the segment were correlated with the analytically determined height
profile from the known inclination angle and measured length of the reference surface. A
least-squares linear fit yielded a calibration constant C' = 0.823, indicating the height change
per unit phase difference.
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Figure 2: Phase-to-height calibration using a 1° angle block. A linear fit yields the calibration constant
C =0.823.

2.3. System Validation

To establish baseline confidence in the absolute measurement capability of the FPP sys-
tem, a two-stage validation was carried out.

First, a baseline assessment was performed using gauge blocks (516-946-26, Mitutoyo,
Japan). Three blocks of different heights were arranged in a staircase configuration, and the
measured step heights were compared with the nominal values. The FPP system achieved
a root mean square error (RMSE) of 13 pm, as shown in Figure , thereby confirming its
fundamental accuracy.

-==Gauge Block FPP

Figure 3: Comparison between FPP and gauge block

Building on this baseline validation, a more comprehensive evaluation was conducted
to quantitatively assess the system’s performance in reconstructing mesoscale surface mor-
phology of DED components. For this purpose, measurements obtained by the FPP system
were compared against a commercial focus-variation microscope (InfiniteFocus G4, Bruker
Alicona, Austria), which served as the reference standard.

To evaluate the influence of surface gradient on reconstruction accuracy, two surface
conditions were analyzed. The first specimen region contained 12 intentionally introduced
depressions, each with a depth of approximately 0.5 mm, exhibiting pronounced local gradi-
ents. The corresponding height maps obtained by the FPP system and the 3D microscope
are presented in Figure[d[(a) and [d[b). Pixel-wise deviations between the two reconstructions
were computed as the Euclidean distance between corresponding height values within the
overlapping measurement domain, and the results are visualized in Figure (c) The statis-
tical distribution of these deviations is presented in Figure [{|(d), based on 1,037,505 valid
data points binned into 500 equally spaced intervals over the 0-0.2 mm range. Key results
include:



o 72.84% of data points lie within £0.05 mm,

e 97.68% of data points lie within £0.10 mm,
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Figure 4: Comparison between FPP and focus-variation system measurements: (a) height map reconstructed
from FPP; (b) corresponding height map obtained via 3D microscope; (¢) pixel-wise deviation magnitude
between the two reconstructions; and (d) statistical histogram of deviations.

Subsequently, a nominal as-built DED surface was evaluated to assess performance on
regions with smaller slopes and smoother transitions. For this nominal surface, the recon-
struction accuracy improved to an RMSE of 43 pm. Quantitative analysis indicates a higher
fidelity, with the proportion of points within +0.05 mm increasing to 78.74%, and those
within +0.10 mm rising to 99.20%.

These results indicate that reconstruction accuracy is dependent on local surface gradients
and roughness. For reference, on standard calibration blocks with a nearly Lambertian finish
and minimal slope variation, the system achieves a significantly lower RMSE of 13 um. The
increase in RMSE to 43 pm to 46 pm on actual DED components is thus attributed to the
non-ideal optical properties of the metal surface, specifically local shadowing effects and
reduced fringe contrast in areas with steep slopes. Despite these challenges, the system
reliably maintains a lateral resolution of 11.8 pm/pixel, confirming its suitability for capturing
mesoscale irregularities in additive manufacturing.

3. System Integration

3.1. Ezxperimental Setup

The experimental setup integrates three primary components: (1) an FPP system for
interlayer surface morphology measurement during DED process; (2) a motion stage enabling
repositioning of the FPP module along a single axis; and (3) a powder-fed laser-based DED
system for sample fabrication.



The FPP module supplied by Phase3D Inc. consists of a projection unit and an imaging
unit. The projection system utilizes a DLP-based projector (LC3010-RGB10/OF, Keynote
Photonics, USA) to project high-contrast RGB fringe patterns onto the build surface for
structured light 3D measurement. The imaging unit employs a CMOS camera (Alvium 1800
U-1242m, Allied Vision, Germany) equipped with a 50 mm focal length lens (86574, Edmund
Optics, USA). The native resolutions of the projector and the camera were 1280 x 720 and
4128 x 3008 pixels, respectively.

During the experiments, measurements were conducted within a sealed chamber equipped
with a laser safety observation window (ACRX-BB2, Kentek, USA), which provides broad-
band optical attenuation and exhibited particularly high rejection in the blue spectral range
(200-532 nm, optical density (OD) 6+, i.e., transmittance below 107%). Blue-channel pro-
jection was selected not only due to the shorter wavelength [35], which improved phase
sensitivity and signal-to-noise ratio, but also because the window effectively suppressed ex-
ternal blue-light interference, thereby enhancing measurement stability.

Both the projector and the camera were rigidly mounted to ensure mechanical stability
and preserve their relative spatial calibration throughout the experiment. The camera was
oriented perpendicularly to the region of interest (the build plate), while the projector was
positioned at a 15° angle relative to the camera’s optical axis. The optimal focus distance
for both the camera and the projector was set to 205 mm from the build plate along the
surface normal.

This configuration ensures that the projected fringe pattern fully covers the build plate
within the camera’s field of view, which spans approximately 49 mm x 36 mm, sufficient to
capture the entirety of the printed sample (12 mm X 12 mm). The setup rendering of the
measurement module is illustrated in Figure o]

Fringe pattern ‘-—I/v

Pattern image

Figure 5: Rendering of the experimental setup.

Accurate surface metrology during the DED process requires consistent imaging geometry
throughout the build. Since the processing chamber is sealed to minimize contamination and
reconditioning needs, the FPP system was designed for remote operation. It was mounted on
a precision linear actuator (FSK40F200-10C7, FUYU, China) and controlled by an Arduino
Uno Rev3.



Because of limited vertical clearance above the build plate, the FPP module could not
be installed overhead. Instead, the system was positioned laterally, and the build plate was
rotated after each layer to face the system. In this arrangement, the increase in build height
translates into a horizontal shift in the FPP frame of reference (Figure [5).

To maintain a fixed optical baseline, the lateral position of the FPP module was adjusted
in step with the build height:

Xon(n) = Xo + by = Xo + 1 - Blager, (2)

where X is the initial lateral offset, n is the layer index, and hAjayer is the nominal layer
thickness. This ensured the module remained within its calibrated measurement volume.
The actuator’s resolution of 50 pm enabled precise positioning to satisfy this constraint across
all layers.

Experiments were conducted using the Additive Rapid Prototyping Instrument (ARPT)
system at Northwestern University [36]. The build chamber features a coaxial laser—powder
nozzle equipped with gas-assisted delivery and integrated with a fiber-coupled laser. A multi-
axis rotary stage at the base of the chamber holds the circular substrate, allowing both
rotation about its vertical axis and tilt adjustment for surface reorientation, as illustrated
in Figure 5] The nozzle provides three translational degrees of freedom, and in combination
with the rotary stage, the system offers full five-axis spatial control.

Key system components include a 1000 W, 1070 nm continuous-wave fiber laser (YLR-
1000, IPG Photonics, USA), providing the primary energy source for material deposition.
Motion control is achieved using Aerotech linear and rotary stages (USA). The deposition
optics consist of a Precitec optical column (Germany) integrated with a Fraunhofer ILT
COAXS nozzle (Germany) for coaxial powder injection. Powder feed is supplied through a
PowderMotionLabs X2 precision feeder (USA), with flow stabilized by 99.999% purity argon
gas (Os < 1 ppb) serving as both carrier and shielding atmosphere. The build substrate
is a 15.8 mm-thick 1018 low-carbon steel disc (#7786T52, McMaster-Carr, USA), and the
feedstock chosen for verification is MetcoClad 316L-Si stainless steel powder (#1079454,
Oerlikon Metco AG, Switzerland; 45-106 pm particle size distribution). Table [2 summarizes
the nominal DED processing parameters used in this study.

Table 2: DED printing parameters used in the experiment.

Printing Parameter | Nominal Value
Laser power (W) 600
Laser diameter (mm) 2.22
Powder feed rate (g/min) 14
Scan speed (mm/s) 7
Hatch spacing (mm) 0.8
Interlayer step (mm) 0.55

3.2. Layer-Wise Print-Measure Loop

To facilitate interlayer surface monitoring during the DED process, a layer-wise print-
measure loop was implemented, in which each deposited layer was immediately followed by



an in-situ geometric measurement. This loop ensured that the surface morphology of each
layer was recorded before the subsequent deposition, enabling timely evaluation of surface
evolution and the early detection of potential anomalies. For each layer n, the system
executed the following steps:

1. Printing: The layer was deposited vertically using the powder-fed laser nozzle in the
standard build orientation, as shown in Figure [6{(a)

2. Rotation: Upon completion of the layer, the rotatable stage oriented the freshly
printed surface toward the horizontally aligned FPP module, as shown in Figure @(b)
The substrate was rotated using an Aerotech AGR150 rotary stage with a direct en-
coder. This stage provides a bidirectional repeatability of 39 prad. Given the substrate
diameter of 100 mm, the corresponding linear positioning error at the substrate edge
(worst-case location) is £1.95 pm. Since this value is less than 4% of the system’s mea-
surement accuracy (+46pm), the influence of rotation-induced positioning variation
on the phase-to-height calibration can be neglected.

3. Measurement: The FPP system captured fringe pattern images and reconstructed
the surface topography via structured light projection.

4. Reorientation: After imaging, the build plate was returned to its original position
for the deposition of the next.

(a) Printing Mode

\ AE‘,/

Rotatable
stage

Figure 6: Integrated FPP setup within a DED system under two platform configurations: (a) printing mode
and (b) measurement mode.

This print-measure cycle was repeated throughout the build, as demonstrated for the
n™ (n+ )™, and (n + 2)™ layers in Figure [} A detailed timing breakdown for each
cycle is provided in Table [3] During each build cycle, substrate flipping took approximately
1 s, and image acquisition required less than 2 s, resulting in a brief pause in the printing
process. Considering that the deposition of a 12 x 12 mm layer required about 29 s, this short
interruption (< 3 s) had a negligible effect on the overall build throughput. The subsequent
phase calculation, 3D reconstruction, and anomaly detection were performed concurrently
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with the deposition of the next layer, further minimizing the measurement-induced impact
on the overall process efficiency.

/Prlntlng Measurement /Prlntlng Measuremerﬁ 7/~ Printing  Measurement
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Figure 7: Schematic of the layer-wise print-measure loop. Each deposited layer is followed by a rotation of
the build plate for in-situ FPP measurement before the next layer is printed.
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Table 3: Timing breakdown of the measurement and processing cycle

Process step Description Time (s) Notes

Substrate flipping Substrate rotation between <1 Performed after each layer

and returning measurement and deposition

Image acquisition Capture of 24 projected fringe <2 Performed after each layer
patterns

Phase calculation Processing one part area (~18 ~ 3 Executed concurrently

and 3D x 18 mm?) during next-layer deposition

reconstruction

NCR-based Computation and identification ~ 5 Executed concurrently

anomaly detection using >2.2 million points during next-layer deposition

Total time per - <11 Only < 3 s causes

cycle deposition pause

This interleaved print-measure strategy enabled layer-by-layer full-field 3D surface ac-
quisition at each layer, supporting cumulative assessment of part morphology and geometric
consistency across layers. By documenting the morphological progression throughout the
build, this loop established a basis for automated anomaly tracking and process control in
future implementations.

3.8. Design of Experiments

To facilitate a systematic and repeatable evaluation of the FPP system’s performance
in detecting surface irregularities, a series of controlled experiments was designed in which
artificial geometric discontinuities were deliberately introduced.

Prior research has shown that reducing laser power or powder feed rate can lead to in-
sufficient layer height and degraded surface quality [37]; however, since laser power can be
modulated almost instantaneously, under-deposition anomalies were introduced by momen-
tarily shutting off the laser over short toolpath segments (1 mm) while keeping the powder
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flow constant. These interruptions provided a simplified and repeatable means of modeling
surface anomalies. Due to melt pool dynamics and re-solidification behavior, the result-
ing surface geometry deviated from the idealized profile, enabling the investigation of how
transient thermal disturbances affected the final morphology.

Based on this strategy, two anomaly distributions were fabricated: (1) Six-anomaly set
(one anomaly randomly inserted every other scan line). (2) Twelve-anomaly set (two anoma-
lies randomly inserted every other scan line). A bilinear hatch infill strategy was applied over
a 12 x 12 mm? area, with scan directions rotated by 90° between successive layers to mitigate
directional bias. All anomaly-containing layers were deposited atop previously built nominal
layers to provide a stable and representative thermal environment during anomaly forma-
tion. To isolate the thermal effects of individual anomalies, each was spaced at a distance
exceeding twice its length, thereby preventing melt pool overlap and ensuring independent
thermal evolution.

A comparative visualization of parts fabricated with and without induced defects is il-
lustrated in Figures[8] The post-build photographs captured with a digital single-lens reflex
(DSLR) camera are shown in Figures [§(a) and [8|(d), while those in Figures [§b) and [§|e)

present in-situ grayscale captures from the FPP system’s CMOS camera.
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Figure 8: DED-fabricated surfaces with induced anomalies (a—c) and under nominal conditions (d-f): (a)
and (d) post-build photographs; (b) and (e) in-situ grayscale images captured by the CMOS camera; and
(c) and (f) laser scan toolpaths, with 1 mm laser-off segments indicating induced anomalies in (f).

The designed laser scan paths corresponding to each build are illustrated in Figure (c)
and (f) In both cases, the printing process started at the corner indicated by the square
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marker, where the nozzle traces the outer boundary along the arrows to form a wall-like
perimeter. It then proceeded from the circular marker, following the arrows to complete
the inner hatch infill. The black lines indicate the programmed scan tracks. Interruptions
along these lines represent 1 mm laser-off segments intentionally inserted to create defects, as
shown in Figure (f) The 6- and 12-anomaly sets described above were primarily designed
for a systematic evaluation of the FPP system’s sensitivity to controlled, localized defects
at complex, pre-determined toolpath locations. With these experimental conditions estab-
lished, the subsequent analysis relies on the fringe projection system to capture the surface
geometry after each deposited layer. Section [4] details the point cloud processing workflow
and demonstrates how anomalies can be identified and characterized based on the measured
data.

However, to validate the system’s generalizability and effectiveness in a more ecologically
valid scenario, a second experiment was conducted. This experiment was designed to repli-
cate a common process failure mode. We fabricated an entire layer using only 50% of the
nominal laser power. This condition is known to produce realistic LOF morphologies and
widespread surface degradation, which are often encountered before process parameters are
fully optimized.

The purpose of this test was to demonstrate that the anomaly detection framework can
generalize from the artificial, discrete defects (i.e., the laser-off segments) to these process-
induced, stochastic defects, thereby proving its utility on surface morphologies representative
of a true manufacturing flaw. This 50%-power layer, along with a baseline surface deposited
under nominal conditions, was analyzed using the identical FPP workflow.

4. Anomaly Detection Framework

4.1. Point Cloud Processing

To accurately characterize the surface morphology of DED-fabricated parts, the raw phase
data acquired from the FPP system were converted into 3D point clouds. While depth maps
offer a 2D visualization of surface elevation, they are limited in capturing fine-scale geometric
details. In contrast, 3D point clouds provide a richer spatial representation, enabling both
visual assessment and quantitative analysis through methods such as curvature estimation,
surface normal computation, and localized anomaly segmentation.

Phase data was first translated into physical height using a pre-calibrated phase-to-height
conversion constant C, allowing unwrapped phase values to be directly mapped to vertical
coordinates. The resulting depth map captured surface variation across both the deposited
material and the surrounding build plate, with lateral resolution defined in pixel units. To
isolate the printed geometry and eliminate background data, Otsu’s thresholding method
was applied to segment the depth map based on height intensity [38]. This segmentation
preserved boundary integrity, ensuring accurate extraction of the deposited area for subse-
quent analysis. The primary objective of this step is to accurately identify the region of
interest (ROI) corresponding to the newly deposited layer. For complex geometries, the ROI
can be further localized based on the programmed deposition path, which provides prior
knowledge of the target area. Because the measurement consistently targets the top surface
after each deposition, challenges such as line-of-sight occlusion or large surface variations
have negligible influence on the surface measurement of the newly deposited layer. Figure [J]
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shows a processing example for an irregular DED-printed specimen with a non-planar and
more complex geometry. The inset presents the full measured morphology, while the main
figure displays the ROI obtained after applying Otsu’s thresholding method. This example
demonstrates that the same processing pipeline is applicable to more complex geometries.
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Figure 9: Measurement results for an irregular DED-printed specimen (inset) and top-surface extraction
using Otsu’s thresholding.

After the ROI was extracted for the primary specimen, the segmented region was trans-
formed into a 3D point cloud, where lateral coordinates were computed using the pixel-to-
length mapping obtained during intrinsic camera calibration, yielding an effective spatial
resolution of approximately 12 um x 12 pm.

Despite accurate calibration, the raw point clouds often contain noise and outliers caused
by optical reflections, measurement artifacts, or partial occlusions. To mitigate these effects,
a statistical outlier removal (SOR) filter was applied [39]. In this approach, for each point
in the cloud, the mean Euclidean distance to its k& = 6 nearest neighbors was computed.
A global analysis of these distances across the dataset yielded the mean d and standard
deviation o. Points whose neighborhood distance exceeded a defined threshold were classified
as outliers and removed. The threshold was calculated as:

dmax = J"’ A g, (3)

where A = 1 is the standard deviation multiplier. Any point with a mean neighborhood
distance d; > dn.x was discarded as a statistical outlier. After applying the SOR filter,
the denoised point clouds were reconstructed for each deposition step, enabling a layer-by-
layer visualization of the evolving surface morphology of the printed part, as presented in

Figure [10]
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Figure 10: Sequential relative height maps of a single DED-printed part acquired via FPP after each depo-
sition step, with height values expressed as deviations from the mean height of the corresponding layer.

Surface reconstruction results based on both height and surface normal maps are shown
in Figure [II] In the defective sample, the height map reveals localized depressions and
irregularities (Figure [11j(a)), while the corresponding normal map highlights sharp angu-
lar transitions and curvature variations (Figure [L1|(b)), indicating geometric discontinuities
caused by the induced anomalies. By contrast, the nominal sample (Figure[11](c) and [L1}(d))
exhibits a smooth surface profile with minimal angular deviation, confirming consistent de-
position quality. To quantitatively assess surface irregularities in DED-fabricated parts, two
geometric descriptors were extracted from the reconstructed point clouds: local point density
and the normal-change rate (NCR) method. These metrics characterize surface morphology
at different scales, enabling the detection of both fine texture variations and larger geometric
anomalies.
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Figure 11: Surface measurements obtained using FPP. (a) and (b) correspond to a part with intentionally
induced anomalies, while (c¢) and (d) correspond to a part fabricated under nominal conditions. For both
cases, (a) and (c) present the reconstructed height maps, and (b) and (d) show the corresponding surface
normal maps.

4.2. Surface Anomaly Visualization and Segmentation

The local point density was computed as the number of neighbors within a fixed-
radius search, the search radius defines the spherical spatial extent surrounding each
query point within which neighboring points are identified for metric calculation [40)].
Let P = {p1,p2,...,pn} denote the set of 3D points sampled from the reconstructed surface.
For each point p; € P, the neighbors within a search radius r were counted as:

N(pi) = K{p; € P | llp; = pill <73 (4)

In this study, the search radius r was set to 0.3 mm, a value specifically chosen to be
approximately twice the characteristic size of the target powder residue anomalies (typically
ranging from 0.15 mm to 0.3 mm). This choice represents a balance between sensitivity to
localized geometric variations and robustness against intrinsic surface roughness and mea-
surement noise inherent to as-built DED surfaces. While a smaller radius might capture finer
textures, it would also elevate false-positive rates due to noise. Conversely, a larger radius
would over-smooth local variations and reduce the detectability of small-scale surface anoma-
lies. Furthermore, considering the system’s lateral resolution of 12 ym, a perfectly planar
surface would theoretically yield approximately 1,960 neighboring points within this 0.3 mm
radius. This chosen radius ensures a sufficient number of neighboring points are included
to yield statistically meaningful local density estimates. This metric captures small-scale
features such as partially sintered powder residues and local undulations between deposition
paths. Regions with low neighbor counts typically correspond to voids or occluded areas
arising from steep surface curvatures or aggressive noise filtering during post-processing. In
the context of DED monitoring, such data sparsity constitutes an informative anomaly sig-
nature rather than a mere measurement artifact, as steep occlusions are generally associated
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with sharp geometric transitions or deep surface voids. Furthermore, missing points caused
by specular reflections, which are subsequently removed by the SOR filter, are observed to
be sparse and spatially dispersed in our experiments. Unlike the clustered missing-point
patterns induced by genuine defects, these isolated data gaps do not accumulate sufficiently
within the chosen search radius to exceed the anomaly detection thresholds. Conversely, high
neighbor counts indicate regions of material accumulation or smooth, overbuilt surfaces.

The surface, containing six laser-off anomalies, is illustrated in Figure [12((a). Disrup-
tions in the programmed toolpath produce discontinuities in deposition, yielding elevated
neighbor densities at melt pool termination sites and geometrically irregular regions of in-
complete fusion. In contrast, Figure (b) shows overall uniform density, though sporadic
particulates (~150 pm) remain detectable. Sparse neighbor counts are consistently observed
near hatch turnarounds, reflecting susceptibility to LOF voids due to reduced thermal con-
tinuity during path reversal. Additionally, a prominent discontinuity between raster fill and
the pre-existing wall highlights the impact of deposition timing: the wall solidified prior to
adjacent infill, preventing sufficient consolidation and resulting in a low-density gap. The
validity of the density-based metric is confirmed in Figure (c), where a focus-variation scan
of the highlighted region resolves a representative surface particle (197 pm x 140 pm lateral
dimensions, ~183 pm in height). This agreement demonstrates that the neighbor-count ap-
proach reliably reflects micro-scale roughness features and provides an intuitive mapping of
DED process-induced anomalies.

[point]
1700

1600 - 1
1500 !

1400

1300

1200

1100

1000
(@) (b) ()

Figure 12: Local point cloud density of DED-fabricated parts with a neighborhood radius of 0.3 mm. (a)
Part with intentional anomalies; (b) part built with nominal parameters. (c) 3D microscopy (5x) zoom-in
of the outlined region in (b).

Surface curvature was characterized using the NCR method [39]. For each point p;, a
normal vector n; was estimated within a localized neighborhood. The NCR search radius
was calibrated to 0.6 mm, which is comparable to the LOF voids in this study (typically
0.8-1.2 mm) Unlike powder residues, LOF defects are geometrically distinct from the back-
ground roughness and possess a larger topographical footprint. Consequently, their geometry
encompasses a sufficient number of data points to yield a stable curvature signal without
the need for the expanded filtering-to-feature ratio required for smaller anomalies. For every
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neighboring point p; € N(p;), the corresponding normal n; was also computed. The NCR
value at p; is defined as the mean angular deviation between its own normal and the normals
of all neighbors:

1
[N (pi)]

Here, i identifies the reference point and j indexes its neighbors. The absolute value en-
sures that normals are compared regardless of orientation. High NCR values indicate abrupt
curvature changes from under-/over-deposition or geometric irregularities. NCR maps were
visualized using sequential colormaps, where red zones highlight anomalies such as conical
depressions (Figure [13)).

A multi-threshold segmentation strategy was then applied to different severity. In this
study, an NCR value greater than 0.045 rad was defined as a high-NCR threshold to isolate
the cores of severe discontinuities, while a threshold of 0.018 rad was used to capture the
surrounding medium-NCR transitional regions. This manual approach is a practical choice,
as it allows researchers to define “defect” severity based on process-specific criteria, such
as distinguishing critical, propagating flaws or minor, acceptable roughness. This enables
hierarchical segmentation of anomalies and their geometric extent.

NCR(p;) = Z arccos (|n; - n;|). (5)

p; EN(p;)

[rad]
0.06

0.05

0.04

0.03

0.02

0.01

Figure 13: Anomaly segmentation using the NCR metric. (a) NCR map with high values in red; (b) zoomed
anomaly; (c¢) binary segmentation of high-NCR cores; (d) segmentation of medium-NCR transitional regions.

The proposed framework leverages complementary descriptors: point density reflects
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spatial completeness, whereas NCR emphasizes curvature transitions. Figure [14] shows the
segmented anomalies across samples with six or twelve laser-off defects. The elongated, ellip-
tical morphologies align with scan directions, reflecting melt pool dynamics under transient
beam interruptions.

To validate detection performance, the segmented anomaly centroids were cross-referenced
with the pre-defined coordinates of the laser interruptions. With thresholds empirically cal-
ibrated to the characteristic scale of the defects, the system yielded a 100% detection rate
for all designed anomalies. Furthermore, visual verification against the corresponding high-
contrast depth maps confirmed that the NCR-defined boundaries accurately capture the
full topographical extent of the depressions. It should be noted that these results represent
performance under optimized thresholding. In a practical industrial scenario, the selection
of thresholds involves a trade-off between sensitivity and specificity. Lowering the thresh-
olds to detect subtler, smaller-scale defects would likely increase the false-alarm rate due
to surface roughness noise. Conversely, stricter thresholds minimize false alarms but may
miss marginal anomalies. Therefore, the 100% detection rate reported here demonstrates
the system’s capability to isolate significant geometric deviations when parameters are
appropriately tuned.
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Figure 14: NCR-based anomaly maps. (a) Six intentional laser-off anomalies; (b) six laser-off anomalies
with vertical inner hatch infill; and (c) a sample with twelve anomalies. Red zones denote high curvature
variation, and black dots mark anomaly centroids.

In addition to the intentionally designed defects, the bright gray regions on the surface
also correspond to areas with higher NCR values, indicating uneven topography. These
regions, particularly along the outer edges, are attributed to insufficient lateral support at
the melt-pool boundary, leading to gradual geometric drift as the build height increases. Al-
though such macroscopic deviations were not identified as defects in the current segmentation
results because their NCR values did not exceed the defined high-threshold criterion, they
represent another important class of process-induced anomalies that can be quantitatively
evaluated in future studies using the same geometry-based framework.

To validate the framework’s generalizability on realistic, process-induced flaws, samples
fabricated under nominal conditions and with a 50% reduction in laser power were analyzed.
Figure (15| compares these two conditions, displaying the depth map and the corresponding
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NCR-based segmentation maps for the 50%-power sample and the nominal sample. The
depth map of the 50%-power sample (Figure [L5{(a)) exhibits periodic pits at the toolpath
turning points, visible along the right edge. These “lack of fusion” type anomalies are absent
in the nominal sample (Figure [L5(b)). The corresponding NCR map (Figure [15(c)) shows
that, by adjusting the segmentation threshold, the system segmented these critical pits while
registering no false positives in the surrounding high-NCR areas. In contrast, the nominal
sample (Figure [15(d)) shows no significant NCR-flagged regions, confirming the method’s
specificity.
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Figure 15: Validation on process-induced flaws comparing a 50% power sample (left) and a nominal sample
(right). (a) Depth maps show periodic pits in the 50% sample. NCR maps confirm selective segmentation
of these pits (c¢) while showing no anomalies on the nominal surface (d).

This comparison highlights the framework’s selective segmentation. While the depth
map of the 50%-power sample shows other minor, stochastic surface variations, the NCR
thresholding filters out these regions of less severe topographical change. This selectivity
allows for differentiation based on defect severity, focusing on significant geometric flaws
(like the turning point pits) while disregarding minor, acceptable roughness.

Notably, all anomaly detection results presented were obtained using an identical set
of hyperparameter, without retuning for different samples. This consistency suggests that
the proposed geometry-based descriptors are relatively insensitive to surface appearance
variations and exhibit promising robustness across different DED surface morphologies within
the studied parameter space.

4.3. Comparison to 2D Image Processing Methods

To provide a comparison with conventional techniques (non-learning-based), several im-
age processing methods that are commonly employed in the literature for preprocessing and
anomaly highlighting in 2D PBF image analysis were applied to DED surface data [41], 42].
As illustrated in Figure (a), a surface containing twelve defects was reconstructed by
averaging FPP images over one fringe-shifting cycle, followed by two iterations of contrast
enhancement at a saturation parameter of 0.35, which served as the input image subsequently
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processed with a Gaussian blur (¢ = 10). The result obtained using the Yen global thresh-
olding method (Figure [16|(b)) predominantly produced large, isolated overexposed regions;
however, these regions did not permit precise localization of individual anomalies and led to
a high false-positive rate. In contrast, local Sauvola thresholding with a window size of 100
(Figure[L6]c)) captured most true anomalies but frequently misclassified benign features such
as scan path overlaps and turnaround grooves. Although post-processing using geometric
descriptors, such as area, circularity, and aspect ratio, alleviated some of these misclassifi-
cations, the performance remained highly sensitive to threshold selection and illumination
variations, requiring frequent manual tuning to sustain acceptable accuracy.

Even though classical algorithms like Yen and Sauvola do not represent the current state-
of-the-art in 2D inspection, which increasingly relies on machine learning (ML) techniques.
However, this comparison serves to illustrate a fundamental challenge inherent to any method
relying solely on 2D intensity data, the confounding of true surface geometry with imaging
artifacts (e.g., specular highlights, shadows, and material reflectivity).

As shown, the 2D methods mistook these high-contrast, non-geometric features for de-
fects. An advanced 2D ML model, like an unsupervised autoencoder trained on this same
flawed intensity data, would still be susceptible to these artifacts. It would likely learn to
flag these high-contrast regions, leading to false positives, or require extensive and complex
training data to learn to ignore them, which is a task made trivial by using 3D data.

In contrast, NCR analysis of 3D point clouds demonstrated superior robustness for
anomaly segmentation in DED (Figure [16{(d)). Unlike 2D threshold-based methods adapted
from image preprocessing in PBF studies, NCR leverages proportional geometric thresh-
olds in 3D space, making it inherently less affected by surface brightness fluctuations and
imaging artifacts. With a lateral resolution of approximately ~12 pm/pixel, the NCR-
based system enabled reliable quantitative extraction of defect-related descriptors, including
anomaly count, spatial distribution, centroid deviation, and morphological metrics. This ca-
pability not only improved segmentation accuracy but also established a scalable framework
for process diagnostics and parameter optimization in laser-DED, thereby overcoming key
limitations of conventional 2D image-based anomaly highlighting approaches.
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Figure 16: Comparison of anomaly highlighting in DED surface using 2D image-based and 3D point-cloud-
based methods. (a) Input image with twelve anomalies; (b) global Yen thresholding (2D); (c) local Sauvola
thresholding (2D); and (d) NCR-based 3D point cloud analysis.
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4.4. Characterization of Anomalies

To assess the correspondence between programmed defect locations and observed surface
morphology, a pixel-wise distance map was computed from segmented anomaly regions to the
nearest laser-off center along the toolpath (Figure . The colormap encodes the Euclidean
distance from each anomaly pixel to its respective shut-off point, thereby visualizing both
spatial extent and directional bias relative to the scan trajectory.

Figure 17: Pixel-wise distance mapping between programmed laser-off points and segmented surface anoma-
lies in three DED-fabricated samples. The colormap encodes 2D Euclidean distance from each pixel within
an anomaly region to the nearest laser-off center.

A recurring feature is the emergence of elongated “tails” extending opposite to the scan
direction, frequently represented as yellow streaks in the distance maps. This asymmetric
morphology arises because, although the laser was deactivated instantaneously, powder feed
and carrier gas delivery continued. The arrival of unmelted powder and cold gas onto a still-
hot melt pool accelerated local cooling, inducing thermal shock and premature solidification
that distorted the downstream anomaly geometry. This phenomenon highlights a thermal
inertia effect, where the combined influence of residual melt pool heat and ongoing material
deposition drives the formation of elongated morphological artifacts beyond the intended
anomaly site. Quantifying the offset between the geometric centroid of the anomaly and
the nominal laser-off point provides valuable insight into the dynamic coupling between heat
flow, powder-gas interaction, and material solidification during transient deposition events.

5. Conclusions

This study demonstrates that a build-height—synchronized FPP module enables micrometer-
scale, full-field 3D reconstruction of DED surfaces with a fidelity of 46 pm. The method
ensures consistent temporal tracking of surface evolution and allows for the early detection of
geometric deviations before they propagate into hidden defects. While the primary objective
was to validate the system’s in-situ measurement capability and demonstrate a concept for
localized surface anomaly detection, the proposed framework, which relies on point cloud
density and normal phase change, encodes reliable signatures of deposition quality, reduc-
ing the reliance on manual annotation. Crucially, this framework also inherently captures
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large-scale geometric distortions, such as cumulative edge deformation, thereby shifting
monitoring from indirect process proxies to direct geometric evidence and offering a new
perspective on process stability.

Future work will focus on expanding this geometry-based framework to quantitatively
evaluate the evolution of such large-scale deviations. The reconstructed 3D surface models
will be compared with the original design geometry to track cumulative distortion. By set-
ting tolerance thresholds for accumulated deviation, the system can support an automated
monitoring strategy for both local and global geometric anomalies. Furthermore, to funda-
mentally mitigate blind spots caused by steep occlusions, the system will be extended to
multi-view FPP configurations. This approach will fuse data from multiple angles to ensure
complete surface coverage, further enhancing robustness. Such multimodal approaches will
enable more comprehensive defect characterization and support the development of closed-
loop process control strategies in DED.

Acknowledgment

This research was supported by the U.S. National Science Foundation (NSF) under the
Engineering Research Center for Hybrid Autonomous Manufacturing Moving from Evolution
to Revolution (ERC-HAMMER, Award EEC-2133630), and under Grants CMMI-2216298
and DGE-2234667.

References

[1] D. Svetlizky, M. Das, B. Zheng, A. L. Vyatskikh, S. Bose, A. Bandyopadhyay, J. M.
Schoenung, E. J. Lavernia, N. Eliaz, Directed energy deposition (DED) additive manu-
facturing: Physical characteristics, defects, challenges and applications, Materials Today
49 (2021) 271-295. doi:10.1016/j.mattod.2021.03.020.

URL https://www.sciencedirect.com/science/article/pii/S1369702121001139

[2] W. Fan, Y. Peng, Y. Qi, H. Tan, Z. Feng, Y. Wang, F. Zhang, X. Lin, Partially melted
powder in laser based directed energy deposition: Formation mechanism and its influ-
ence on microstructure, International Journal of Machine Tools and Manufacture 192
(2023) 104072. doi:10.1016/j.1ijmachtools.2023.104072.

URL https://www.sciencedirect.com/science/article/pii/S0890695523000809

[3] F. Chen, R. Zha, J. Jeong, S. Liao, J. Cao, Directed energy deposition on sheet metal
forming for reinforcement structures, Journal of Manufacturing Processes 144 (2025)
339-349. doi:10.1016/j. jmapro.2025.03.120.

URL https://www.sciencedirect.com/science/article/pii/S1526612525003834

[4] D. R. Feenstra, R. Banerjee, H. L. Fraser, A. Huang, A. Molotnikov, N. Birbilis, Critical
review of the state of the art in multi-material fabrication via directed energy deposition,
Current Opinion in Solid State and Materials Science 25 (4) (2021) 100924. doi:
10.1016/j.cossms.2021.100924.

URL https://www.sciencedirect.com/science/article/pii/S1359028621000279

23


https://www.sciencedirect.com/science/article/pii/S1369702121001139
https://www.sciencedirect.com/science/article/pii/S1369702121001139
https://doi.org/10.1016/j.mattod.2021.03.020
https://www.sciencedirect.com/science/article/pii/S1369702121001139
https://www.sciencedirect.com/science/article/pii/S0890695523000809
https://www.sciencedirect.com/science/article/pii/S0890695523000809
https://www.sciencedirect.com/science/article/pii/S0890695523000809
https://doi.org/10.1016/j.ijmachtools.2023.104072
https://www.sciencedirect.com/science/article/pii/S0890695523000809
https://www.sciencedirect.com/science/article/pii/S1526612525003834
https://www.sciencedirect.com/science/article/pii/S1526612525003834
https://doi.org/10.1016/j.jmapro.2025.03.120
https://www.sciencedirect.com/science/article/pii/S1526612525003834
https://www.sciencedirect.com/science/article/pii/S1359028621000279
https://www.sciencedirect.com/science/article/pii/S1359028621000279
https://doi.org/10.1016/j.cossms.2021.100924
https://doi.org/10.1016/j.cossms.2021.100924
https://www.sciencedirect.com/science/article/pii/S1359028621000279

[5]

(6]

17l

18]

19]

[10]

[11]

12]

S. H. Kim, H. Lee, S. M. Yeon, C. Aranas, K. Choi, J. Yoon, S. W. Yang, H. Lee,
Selective compositional range exclusion via directed energy deposition to produce a
defect-free Inconel 718/SS 316L functionally graded material, Additive Manufacturing
47 (2021) 102288. |doi:10.1016/j.addma.2021.102288.

URL https://www.sciencedirect.com/science/article/pii/S2214860421004486

Z. Sun, W. Guo, L. Li, Numerical modelling of heat transfer, mass transport and mi-
crostructure formation in a high deposition rate laser directed energy deposition process,
Additive Manufacturing 33 (2020) 101175. doi:10.1016/j.addma.2020.101175.

URL https://www.sciencedirect.com/science/article/pii/S2214860420305479

S. Webster, J. Jeong, R. Zha, S. Liao, A. Castro, L. Jacquemetton, D. Beckett,
K. Ehmann, J. Cao, In Situ, Parallel Monitoring of Relative Temperature, Material
Emission, and Laser Reflection in Powder-Blown Directed Energy Deposition, JOM
76 (11) (2024) 6615-6638. doi:10.1007/s11837-024-06837-3.

URL https://doi.org/10.1007/s11837-024-06837-3

Y. M. Zhang, C. W. J. Lim, C. Tang, B. Li, Numerical investigation on heat transfer of
melt pool and clad generation in directed energy deposition of stainless steel, Interna-
tional Journal of Thermal Sciences 165 (2021) 106954. doi:10.1016/j.ijthermalsci.
2021.106954.

URL https://www.sciencedirect.com/science/article/pii/S1290072921001204

M. M. Imran, A. Che Idris, L. C. De Silva, Y.-B. Kim, P. E. Abas, Advancements
in 3D Printing: Directed Energy Deposition Techniques, Defect Analysis, and Quality
Monitoring, Technologies 12 (6) (2024) 86, number: 6 Publisher: Multidisciplinary
Digital Publishing Institute. doi:10.3390/technologies12060086.

URL https://wuw.mdpi.com/2227-7080/12/6/86

B. Li, Y. Zhang, Y. Lei, H. Wei, C. Chen, F. Liu, P. Zhao, K. Wang, A single-
sensor multi-scale quality monitoring methodology for laser-directed energy deposi-
tion: Example with height instability and porosity monitoring in additive manu-
facturing of ceramic thin-walled parts, Additive Manufacturing 79 (2024) 103923.
doi:10.1016/j.addma.2023.103923.

URL https://www.sciencedirect.com/science/article/pii/S2214860423005365

L. E. dos Santos Paes, M. Pereira, F. A. Xavier, W. L. Weingaertner, L. O. Vilarinho,
Lack of fusion mitigation in directed energy deposition with laser (DED-L) additive
manufacturing through laser remelting, Journal of Manufacturing Processes 73 (2022)
67-77. doi:10.1016/j. jmapro.2021.10.052.

URL https://www.sciencedirect.com/science/article/pii/S1526612521007842

M. Liu, A. Kumar, S. Bukkapatnam, M. Kuttolamadom, A Review of the Anomalies
in Directed Energy Deposition (DED) Processes & Potential Solutions - Part Quality
& Defects, Procedia Manufacturing 53 (2021) 507-518. doi:10.1016/j.promfg.2021.
06.093.

URL https://www.sciencedirect.com/science/article/pii/S2351978921001189

24


https://www.sciencedirect.com/science/article/pii/S2214860421004486
https://www.sciencedirect.com/science/article/pii/S2214860421004486
https://doi.org/10.1016/j.addma.2021.102288
https://www.sciencedirect.com/science/article/pii/S2214860421004486
https://www.sciencedirect.com/science/article/pii/S2214860420305479
https://www.sciencedirect.com/science/article/pii/S2214860420305479
https://doi.org/10.1016/j.addma.2020.101175
https://www.sciencedirect.com/science/article/pii/S2214860420305479
https://doi.org/10.1007/s11837-024-06837-3
https://doi.org/10.1007/s11837-024-06837-3
https://doi.org/10.1007/s11837-024-06837-3
https://doi.org/10.1007/s11837-024-06837-3
https://www.sciencedirect.com/science/article/pii/S1290072921001204
https://www.sciencedirect.com/science/article/pii/S1290072921001204
https://doi.org/10.1016/j.ijthermalsci.2021.106954
https://doi.org/10.1016/j.ijthermalsci.2021.106954
https://www.sciencedirect.com/science/article/pii/S1290072921001204
https://www.mdpi.com/2227-7080/12/6/86
https://www.mdpi.com/2227-7080/12/6/86
https://www.mdpi.com/2227-7080/12/6/86
https://doi.org/10.3390/technologies12060086
https://www.mdpi.com/2227-7080/12/6/86
https://www.sciencedirect.com/science/article/pii/S2214860423005365
https://www.sciencedirect.com/science/article/pii/S2214860423005365
https://www.sciencedirect.com/science/article/pii/S2214860423005365
https://www.sciencedirect.com/science/article/pii/S2214860423005365
https://doi.org/10.1016/j.addma.2023.103923
https://www.sciencedirect.com/science/article/pii/S2214860423005365
https://www.sciencedirect.com/science/article/pii/S1526612521007842
https://www.sciencedirect.com/science/article/pii/S1526612521007842
https://doi.org/10.1016/j.jmapro.2021.10.052
https://www.sciencedirect.com/science/article/pii/S1526612521007842
https://www.sciencedirect.com/science/article/pii/S2351978921001189
https://www.sciencedirect.com/science/article/pii/S2351978921001189
https://www.sciencedirect.com/science/article/pii/S2351978921001189
https://doi.org/10.1016/j.promfg.2021.06.093
https://doi.org/10.1016/j.promfg.2021.06.093
https://www.sciencedirect.com/science/article/pii/S2351978921001189

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

Y. Lu, W. Li, J. Dong, C. Wang, R. Shen, K. Zhu, B. Wu, G. Sun, J. Rao, Online stress
monitoring during laser-directed energy deposition based on dynamic contour method,
Virtual and Physical Prototyping 20 (1) (2025) €2448543, publisher: Taylor & Fran-
cis _eprint: https://doi.org/10.1080/17452759.2024.2448543. doi:10.1080/17452759.
2024 .2448543.

URL https://doi.org/10.1080/17452759.2024.2448543

E. Binega, L. Yang, H. Sohn, J. C. P. Cheng, Online geometry monitoring during
directed energy deposition additive manufacturing using laser line scanning, Precision
Engineering 73 (2022) 104-114. |doi:10.1016/j.precisioneng.2021.09.005.

URL https://www.sciencedirect.com/science/article/pii/S014163592100218X

R. Chen, W.-L. Li, J.-H. Zhang, Y.-M. Tian, W. Xu, H. Ding, Underwater 3-D scanning:
Modeling and fitting of multilayer refracted laser surface, IEEE/ASME Transactions on
Mechatronics (2025) 1-12doi:10.1109/TMECH. 2025 . 3583036.

H. Wang, S. Qi, T. Zang, C. Chen, X. Zhao, Y. Liu, In-situ surface inspection for
wire-arc directed energy deposition integrating 3D topography reconstruction, defect
detection and roughness measurement, Optics & Laser Technology 187 (2025) 112871.
doi:10.1016/j.optlastec.2025.112871.

URL https://www.sciencedirect.com/science/article/pii/S0030399225004621

I. Jeon, L. Yang, K. Ryu, H. Sohn, Online melt pool depth estimation during directed
energy deposition using coaxial infrared camera, laser line scanner, and artificial neu-
ral network, Additive Manufacturing 47 (2021) 102295. doi:10.1016/j.addma.2021.
102295.

URL https://www.sciencedirect.com/science/article/pii/S2214860421004553

N. Ghanadi, S. Pasebani, A Review on Wire-Laser Directed Energy Deposition: Param-
eter Control, Process Stability, and Future Research Paths, Journal of Manufacturing
and Materials Processing 8 (2) (2024) 84, publisher: Multidisciplinary Digital Publish-
ing Institute. doi:10.3390/jmmp8020084.

URL https://www.mdpi.com/2504-4494/8/2/84

Q. Wang, J. Jia, Y. Zhao, A. Wu, In situ measurement of full-field deformation for
arc-based directed energy deposition via digital image correlation technology, Additive
Manufacturing 72 (2023) 103635. |doi:10.1016/j.addma.2023.103635.

URL https://www.sciencedirect.com/science/article/pii/S2214860423002488

J. Haley, C. Leach, B. Jordan, R. Dehoff, V. Paquit, In-situ digital image correlation
and thermal monitoring in directed energy deposition additive manufacturing, Optics
Express 29 (7) (2021) 9927-9941, publisher: Optica Publishing Group. doi:10.1364/
OE.416659.

URL https://opg.optica.org/oe/abstract.cfm?uri=oe-29-7-9927

J. Ning, Y. Zhao, L. Zhu, C. Yang, M. Yu, Z. Yang, S. Qin, Z. Jiang, L. Xu, J. Li,
B. Xin, S. Wang, Height consistency compensation in laser-directed energy deposition

25


https://doi.org/10.1080/17452759.2024.2448543
https://doi.org/10.1080/17452759.2024.2448543
https://doi.org/10.1080/17452759.2024.2448543
https://doi.org/10.1080/17452759.2024.2448543
https://doi.org/10.1080/17452759.2024.2448543
https://www.sciencedirect.com/science/article/pii/S014163592100218X
https://www.sciencedirect.com/science/article/pii/S014163592100218X
https://doi.org/10.1016/j.precisioneng.2021.09.005
https://www.sciencedirect.com/science/article/pii/S014163592100218X
https://doi.org/10.1109/TMECH.2025.3583036
https://www.sciencedirect.com/science/article/pii/S0030399225004621
https://www.sciencedirect.com/science/article/pii/S0030399225004621
https://www.sciencedirect.com/science/article/pii/S0030399225004621
https://doi.org/10.1016/j.optlastec.2025.112871
https://www.sciencedirect.com/science/article/pii/S0030399225004621
https://www.sciencedirect.com/science/article/pii/S2214860421004553
https://www.sciencedirect.com/science/article/pii/S2214860421004553
https://www.sciencedirect.com/science/article/pii/S2214860421004553
https://doi.org/10.1016/j.addma.2021.102295
https://doi.org/10.1016/j.addma.2021.102295
https://www.sciencedirect.com/science/article/pii/S2214860421004553
https://www.mdpi.com/2504-4494/8/2/84
https://www.mdpi.com/2504-4494/8/2/84
https://doi.org/10.3390/jmmp8020084
https://www.mdpi.com/2504-4494/8/2/84
https://www.sciencedirect.com/science/article/pii/S2214860423002488
https://www.sciencedirect.com/science/article/pii/S2214860423002488
https://doi.org/10.1016/j.addma.2023.103635
https://www.sciencedirect.com/science/article/pii/S2214860423002488
https://opg.optica.org/oe/abstract.cfm?uri=oe-29-7-9927
https://opg.optica.org/oe/abstract.cfm?uri=oe-29-7-9927
https://doi.org/10.1364/OE.416659
https://doi.org/10.1364/OE.416659
https://opg.optica.org/oe/abstract.cfm?uri=oe-29-7-9927
https://www.sciencedirect.com/science/article/pii/S0020740324000067
https://www.sciencedirect.com/science/article/pii/S0020740324000067

22]

23]

[24]

[25]

[26]

[27]

28]

29]

[30]

of thin-walled parts, International Journal of Mechanical Sciences 266 (2024) 108963.
doi:10.1016/j.ijmecsci.2024.108963.
URL https://www.sciencedirect.com/science/article/pii/S0020740324000067

R. Dai, X. Tang, W. Li, Y.-H. Liu, Self-correcting and globally-consistent 3D cross-
ratio invariant model for multi-view microscopic profilometry, IEEE Transactions on
Industrial Informatics 21 (3) (2025) 2373-2382. doi:10.1109/TII.2024.3507177.

B. Zhang, J. Ziegert, F. Farahi, A. Davies, In situ surface topography of laser powder
bed fusion using fringe projection, Additive Manufacturing 12 (2016) 100-107. doi:
10.1016/j.addma.2016.08.001.

URL https://www.sciencedirect.com/science/article/pii/S2214860416300720

Y. Liu, L. Blunt, Z. Zhang, H. A. Rahman, F. Gao, X. Jiang, In-situ areal inspection
of powder bed for electron beam fusion system based on fringe projection profilometry,
Additive Manufacturing 31 (2020) 100940. doi:10.1016/j.addma.2019.100940.

URL https://www.sciencedirect.com/science/article/pii/S2214860419305123

A. Remani, A. Rossi, F. Penia, A. Thompson, J. Dardis, N. Jones, N. Senin, R. Leach,
In-situ monitoring of laser-based powder bed fusion using fringe projection, Additive
Manufacturing 90 (2024) 104334. |doi:10.1016/j.addma.2024.104334.

URL https://www.sciencedirect.com/science/article/pii/S2214860424003804

D. Dev Singh, T. Mahender, A. Raji Reddy, [Powder bed fusion process: A brief review,
Materials Today: Proceedings 46 (2021) 350-355. doi:10.1016/j.matpr.2020.08.
415.

URL https://www.sciencedirect.com/science/article/pii/S2214785320362878

D.-G. Ahn, Directed Energy Deposition (DED) Process: State of the Art, International
Journal of Precision Engineering and Manufacturing-Green Technology 8 (2) (2021)
703-742. |doi:10.1007/s40684-020-00302-7.

URL https://doi.org/10.1007/s40684-020-00302-7

H.-W. Hsu, Y.-L. Lo, M.-H. Lee, Vision-based inspection system for cladding height
measurement in Direct Energy Deposition (DED), Additive Manufacturing 27 (2019)
372-378. doi:10.1016/j.addma.2019.03.017.

URL https://www.sciencedirect.com/science/article/pii/S2214860418306572

V. Suresh, B. Balasubramaniam, L.-H. Yeh, B. Li, Recent Advances in In Situ 3D
Surface Topographical Monitoring for Additive Manufacturing Processes, Journal of
Manufacturing and Materials Processing 9 (4) (2025) 133, publisher: Multidisciplinary
Digital Publishing Institute. doi:10.3390/jmmp9040133.

URL https://www.mdpi.com/2504-4494/9/4/133

C. Zuo, S. Feng, L. Huang, T. Tao, W. Yin, Q. Chen, Phase shifting algorithms for
fringe projection profilometry: A review, Optics and Lasers in Engineering 109 (2018)
23-59. doi:10.1016/j.optlaseng.2018.04.019.

URL https://www.sciencedirect.com/science/article/pii/S0143816618302203

26


https://www.sciencedirect.com/science/article/pii/S0020740324000067
https://www.sciencedirect.com/science/article/pii/S0020740324000067
https://www.sciencedirect.com/science/article/pii/S0020740324000067
https://doi.org/10.1016/j.ijmecsci.2024.108963
https://www.sciencedirect.com/science/article/pii/S0020740324000067
https://doi.org/10.1109/TII.2024.3507177
https://www.sciencedirect.com/science/article/pii/S2214860416300720
https://www.sciencedirect.com/science/article/pii/S2214860416300720
https://doi.org/10.1016/j.addma.2016.08.001
https://doi.org/10.1016/j.addma.2016.08.001
https://www.sciencedirect.com/science/article/pii/S2214860416300720
https://www.sciencedirect.com/science/article/pii/S2214860419305123
https://www.sciencedirect.com/science/article/pii/S2214860419305123
https://doi.org/10.1016/j.addma.2019.100940
https://www.sciencedirect.com/science/article/pii/S2214860419305123
https://www.sciencedirect.com/science/article/pii/S2214860424003804
https://doi.org/10.1016/j.addma.2024.104334
https://www.sciencedirect.com/science/article/pii/S2214860424003804
https://www.sciencedirect.com/science/article/pii/S2214785320362878
https://doi.org/10.1016/j.matpr.2020.08.415
https://doi.org/10.1016/j.matpr.2020.08.415
https://www.sciencedirect.com/science/article/pii/S2214785320362878
https://doi.org/10.1007/s40684-020-00302-7
https://doi.org/10.1007/s40684-020-00302-7
https://doi.org/10.1007/s40684-020-00302-7
https://www.sciencedirect.com/science/article/pii/S2214860418306572
https://www.sciencedirect.com/science/article/pii/S2214860418306572
https://doi.org/10.1016/j.addma.2019.03.017
https://www.sciencedirect.com/science/article/pii/S2214860418306572
https://www.mdpi.com/2504-4494/9/4/133
https://www.mdpi.com/2504-4494/9/4/133
https://doi.org/10.3390/jmmp9040133
https://www.mdpi.com/2504-4494/9/4/133
https://www.sciencedirect.com/science/article/pii/S0143816618302203
https://www.sciencedirect.com/science/article/pii/S0143816618302203
https://doi.org/10.1016/j.optlaseng.2018.04.019
https://www.sciencedirect.com/science/article/pii/S0143816618302203

[31]

32]

33

[34]

[35]

[36]

137]

38

[39]

S. Feng, C. Zuo, L. Zhang, T. Tao, Y. Hu, W. Yin, J. Qian, Q. Chen, Calibration of
fringe projection profilometry: A comparative review, Optics and Lasers in Engineering
143 (2021) 106622. doi:10.1016/j.optlaseng.2021.106622.

URL https://www.sciencedirect.com/science/article/pii/S0143816621000920

R. Dai, W. Li, Y.-H. Liu, Per-pixel calibration based on multi-view 3d reconstruction
errors beyond the depth of field, IEEE Transactions on Image Processing 34 (2025)
2124-2132. |doi:10.1109/TIP.2025.3551165.

S. ZHANG, HIGH-SPEED 3D IMAGING WITH DIGITAL FRINGE PROJECTION
TECHNIQUES, CRC PRESS, S.1., 2019, oCLC: 1129790344,

N. M. O'Dowd, A. J. Wachtor, M. D. Todd, Effects of digital fringe projection opera-
tional parameters on detecting powder bed defects in additive manufacturing, Additive
Manufacturing 48 (2021) 102454. |doi:10.1016/j.addma.2021.102454.

URL https://www.sciencedirect.com/science/article/pii/S2214860421006060

R. Liang, Short wavelength and polarized phase shifting fringe projection
imaging of translucent objects, Optical Engineering 53 (1) (2014) 014104.
doi:10.1117/1.0E.53.1.014104.

URL http://opticalengineering.spiedigitallibrary.org/article.aspx?doi=
10.1117/1.0E.53.1.014104

R. Zha, N. T.-C. Nguyen, G. B. Olson, J. Cao, In-situ blended 316L-Si and PH48S
via laser directed energy deposition for functionally graded applications, CIRP Annals
73 (1) (2024) 137-140. doi:10.1016/].cirp.2024.04.041!

URL https://www.sciencedirect.com/science/article/pii/S0007850624000581

Digital Fringe Projection for Interlayer Print Defect Characterization in Directed Energy
Deposition, Vol. 2024 International Symposium on Flexible Automation of International
Symposium on Flexible Automation. arXiv:https://asmedigitalcollection.asme.
org/ISFA/proceedings-pdf/ISFA2024/87882/V001T01A002/7372149/v001t01a002-
isfa2024-141314.pdf, doi:10.1115/ISFA2024-141314.

URL https://doi.org/10.1115/ISFA2024-141314

X. Chen, J. Li, S. Huang, H. Cui, P. Liu, Q. Sun, An Automatic Concrete Crack-
Detection Method Fusing Point Clouds and Images Based on Improved Otsu’s Algo-
rithm, Sensors 21 (5) (2021) 1581, publisher: Multidisciplinary Digital Publishing In-
stitute. doi:10.3390/s21051581.

URL https://www.mdpi.com/1424-8220/21/5/1581

R. B. Rusu, S. Cousins, 3D is here: Point Cloud Library (PCL), in: 2011 IEEE In-
ternational Conference on Robotics and Automation, 2011, pp. 1-4, iSSN: 1050-4729.
doi:10.1109/ICRA.2011.5980567.

URL https://ieeexplore.ieee.org/document/5980567

27


https://www.sciencedirect.com/science/article/pii/S0143816621000920
https://www.sciencedirect.com/science/article/pii/S0143816621000920
https://doi.org/10.1016/j.optlaseng.2021.106622
https://www.sciencedirect.com/science/article/pii/S0143816621000920
https://doi.org/10.1109/TIP.2025.3551165
https://www.sciencedirect.com/science/article/pii/S2214860421006060
https://www.sciencedirect.com/science/article/pii/S2214860421006060
https://doi.org/10.1016/j.addma.2021.102454
https://www.sciencedirect.com/science/article/pii/S2214860421006060
http://opticalengineering.spiedigitallibrary.org/article.aspx?doi=10.1117/1.OE.53.1.014104
http://opticalengineering.spiedigitallibrary.org/article.aspx?doi=10.1117/1.OE.53.1.014104
https://doi.org/10.1117/1.OE.53.1.014104
http://opticalengineering.spiedigitallibrary.org/article.aspx?doi=10.1117/1.OE.53.1.014104
http://opticalengineering.spiedigitallibrary.org/article.aspx?doi=10.1117/1.OE.53.1.014104
https://www.sciencedirect.com/science/article/pii/S0007850624000581
https://www.sciencedirect.com/science/article/pii/S0007850624000581
https://doi.org/10.1016/j.cirp.2024.04.041
https://www.sciencedirect.com/science/article/pii/S0007850624000581
https://doi.org/10.1115/ISFA2024-141314
https://doi.org/10.1115/ISFA2024-141314
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/ISFA/proceedings-pdf/ISFA2024/87882/V001T01A002/7372149/v001t01a002-isfa2024-141314.pdf
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/ISFA/proceedings-pdf/ISFA2024/87882/V001T01A002/7372149/v001t01a002-isfa2024-141314.pdf
http://arxiv.org/abs/https://asmedigitalcollection.asme.org/ISFA/proceedings-pdf/ISFA2024/87882/V001T01A002/7372149/v001t01a002-isfa2024-141314.pdf
https://doi.org/10.1115/ISFA2024-141314
https://doi.org/10.1115/ISFA2024-141314
https://www.mdpi.com/1424-8220/21/5/1581
https://www.mdpi.com/1424-8220/21/5/1581
https://www.mdpi.com/1424-8220/21/5/1581
https://doi.org/10.3390/s21051581
https://www.mdpi.com/1424-8220/21/5/1581
https://ieeexplore.ieee.org/document/5980567
https://doi.org/10.1109/ICRA.2011.5980567
https://ieeexplore.ieee.org/document/5980567

[40]

[41]

[42]

Q.-Y. Zhou, J. Park, V. Koltun, Open3D: A Modern Library for 3D Data Processing,
arXiv:1801.09847 [cs| (Jan. 2018). |doi:10.48550/arXiv.1801.09847.
URL http://arxiv.org/abs/1801.09847

J. Li, X. Zhang, F. Ma, S. Wang, Y. Huang, Simultaneous Pore Detection and Mor-
phological Features Extraction in Laser Powder Bed Fusion with Image Processing,
Materials 17 (6) (2024) 1373, publisher: Multidisciplinary Digital Publishing Institute.
d0i:10.3390/mal17061373.

URL https://www.mdpi.com/1996-1944/17/6/1373

D. Dinh, N. Muller, Y. Quinsat, Layering Defects Detection in Laser Powder Bed Fusion
using Embedded Vision System, Computer-Aided Design and Applications 18 (5) (2021)
1111-1118. doi:10.14733/cadaps.2021.1111-1118.

URL http://cad-journal.net/files/vol_18/Vol18No5.html

28


http://arxiv.org/abs/1801.09847
https://doi.org/10.48550/arXiv.1801.09847
http://arxiv.org/abs/1801.09847
https://www.mdpi.com/1996-1944/17/6/1373
https://www.mdpi.com/1996-1944/17/6/1373
https://doi.org/10.3390/ma17061373
https://www.mdpi.com/1996-1944/17/6/1373
http://cad-journal.net/files/vol_18/Vol18No5.html
http://cad-journal.net/files/vol_18/Vol18No5.html
https://doi.org/10.14733/cadaps.2021.1111-1118
http://cad-journal.net/files/vol_18/Vol18No5.html

	Introduction
	Methodology
	Fringe Projection Profilometry
	System Calibration
	System Validation

	System Integration
	Experimental Setup
	Layer-Wise Print-Measure Loop
	Design of Experiments

	Anomaly Detection Framework
	Point Cloud Processing
	Surface Anomaly Visualization and Segmentation
	Comparison to 2D Image Processing Methods
	Characterization of Anomalies

	Conclusions

